
QUBILS-MIDAS 3D-DESCRIPTORS 

1. Mathematical Definition. 

The QuBiLS-MIDAS molecular 3D-indices1, 2 are computed from the atomic contribution of 

each atom in a molecule. In this way, if a molecule consists of n atoms, then the kth two-linear, 

three-linear and four-linear indices for atom “a” are calculated as n-linear algebraic maps3, 4 

(forms) in ℝn, in a canonical basis set, and are expressed by the following equations, respectively: 
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where, “a” indicates the atom (𝑎 = 1,2, … , 𝑛), n is the number of atoms in a molecule, La is the 

entry corresponding to the contribution of the atom “a” in the vector of atom-level indices L  

[designated here by the well-known acronym: LOVI (LOcal Vertex Invariant)]5, 6 and x1,…,xn, 

y1,…,yn, z1,…,zn and w1,…,wn are the coordinates or components of the molecular vectors x , y , z  

and w  in a system of canonical (‘natural’) basis vectors of ℝn.  

The use of molecular vectors based on atomic properties as representation of the chemical 

structures has been used in other works.7-10 As can be noticed, these molecular vectors are weighted 

with different “standard” atom- and fragment-based properties (weights) for atoms in a molecule 

and thus several combinations of algebraic forms are obtained (see Table 1). The weighting 

schemes (properties) used are the following: 1) atomic mass (M), 2) the van der Waals volume 

(V), 3) the atomic polarizability (P), 4) atomic electronegativity in Pauling scale (E), 5) atomic 

Ghose-Crippen LogP (A),11-13 6) atomic charge (C) (Gasteiger-Marsili),14 7) atomic polar surface 

area (PSA),15 8) atomic refractivity (R),11-13 9) atomic hardness (H) and 10) atomic softness (S). 

 

 

 



Table 1. N-linear algebraic forms implemented in the QuBiLS program. 

1. Two-linear [𝒎𝒌(𝒙̅, 𝒚̅)]  
- Linear (X,  Y = 1) 

- Bilinear (X <> Y) 

- Quadratic (X = Y) 

 

2. Three-linear [𝒕𝒓𝒌(𝒙̅, 𝒚̅, 𝒛̅)] 
- Threelinear (X <> Y <> Z) 

- Threelinear-Quadratic-Bilinear ((X = Y) <> Z) 

- Threelinear-Bilinear (X <> Y, Z = 1) 

- Threelinear-Linear (X, Y = 1, Z = 1) 

- Threelinear-Cubic (X = Y = Z) 

 

3. Four-linear [𝒒𝒖𝒌(𝒙̅, 𝒚̅, 𝒛̅, 𝒘̅)] 

- Fourlinear (X <> Y <> Z <> W) 

- Fourlinear-Quadratic-Threelinear ((X = Y) <> Z <> W) 

- Fourlinear-Threelinear (X = 1, Y <> Z <> W) 

- Fourlinear-Cubic-Bilinear ((X = Y = Z) <> W) 

- Fourlinear-Bilinear (X = Y = 1, Z <> W) 

- Fourlinear-Linear (X = Y = Z = 1, W) 

- Fourlinear-Quadruple (X = Y = Z = W) 
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Finally and right from the previous definitions (see Eqs. 1-3), the kth total (whole-molecule) 

bilinear, quadratic, linear, three-linear and four-linear indices (QuBiLS-MIDAS MDs) can be 

calculated applying a set of aggregation operators (also called invariants) defined in the reports16, 

17, to the vector of atomic contributions, 𝐿̅, for instance: the sum of the atom-level indices 

(components of 𝐿̅) to aggregate the information captured by them. 

 

2. N-tuples Spatial-(Dis) Similarity Matrices to Represent 3D-Information of the Chemical 

Structures. 

The codification of 3D information of the chemical structures to compute the proposed indices 

is performed through the kth two-tuples, three-tuples and four-tuples spatial-(dis)similarity 

matrices [𝔾𝑘, 𝔾𝕋𝑘 and 𝔾ℚ𝑘] for the relations among two, three and four atoms respectively (see 

Eqs. 1-3). The superscript k indicates the power to which 𝔾, 𝔾𝕋 and 𝔾ℚ are raised. In this way, 

for k = 0 all entries of the matrices 𝔾0, 𝔾𝕋0 and 𝔾ℚ0 have value 1 and for k = 1 the coefficients 

1

ijg , 
1

ijlgt  and 
1

ijlhgq  corresponding to the matrices 𝔾1, 𝔾𝕋1 and 𝔾ℚ1 represent the information of 

the interactions among two, three and four atoms respectively. The definition of the coefficients

1

ijg , 
1

ijlgt  and 
1

ijlhgq  is shown below: 
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where, ijD  is the (dis)-similarity between atomic nuclei i and j (see Table 1), ijlTT  is an measure 

for ternary relations of atoms and ijlhQQ  is an measure for quaternary relations of atoms. The 

coefficients ijL , ijlL  and ijlhL  represents the diagonal entries of the matrices 𝔾1, 𝔾𝕋1 and 𝔾ℚ1 

respectively, which for a greater discrimination of the molecular structures could have assigned 

two different values: 1) the number of lone-pairs electrons for atoms, or 2) the Euclidean spatial 

distance,
ioD  for each atom i and center of the molecule, o. 

Table 1. Metrics used to compute the “distance” between two atoms of a molecule.  

Metrics Formulaa Rangeb Average Range 

Minkowsky (m1-m7) 

p = 0.25, 0.5, 1, 1.5, 2, 2.5, 3, and ∞ 

[where, when p= 1 it is the 

Manhattan, city-block or taxi distance 

(also known as Hamming distance 

between binary vectors) and p = 2 is 

Euclidean distance) 
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aThe variable xj(yj) is the value of the coordinate j of the atom s and the atom t, corresponding to the molecule X (Y), 

respectively. The h value is the Cartesian coordinates (x, y, z) of an atom. The p values in Minkowsky metric are 0.25, 

0.5, 1 (Manhattan), 1.5, 2 (Euclidean), 2.5 and 3 (Minkowsky). b“Range” refers to “range” and not to “rank” and is 

defined as 𝑅𝑎𝑛𝑔𝑒 = 𝑚𝑎𝑥{𝑥𝑗} − 𝑚𝑖𝑛{𝑥𝑗}. 

As can be previously observed, the two-tuples spatial-(dis)similarity matrix of order 1 (𝔾1) 

constitute a generalization of the geometrical matrix18 where each entry only correspond to the 

Euclidean distance19-22 between two atoms. On the other hand and as can be analyzed, the sub-

indices i, j, l and h belonging to the ternary and quaternary measures ( ijlTT , ijlhQQ ) represent the 

atoms of the non-covalent interactions that are codified. Thus, the values of these sub-indices are 

not always different whereby the distinct combinations of them are considered. In this way, the 

three-tuples (or four-tuples) spatial-(dis)similarity matrices can be built using only ternary (or 

quaternary) measures or as from the reducing of ternary (or quaternary) measures to the 

corresponding inferior measures. Therefore, the following options are into accounted to build the 

n-tuples matrices: 
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where, 3C (or 4C) and 3nC (or 4nC) is the nomenclature assigned when the ternary (or quaternary) 

measures can be or not reduced, respectively. In addition, 
ijlhQ  is the measure used to establish the 

relation among four atoms (see Table 2B), 
ijlT  is the measure used to establish the relation among 

three atoms (see Table 2A), and 
ijD  is the distance between two atoms (see Table 1). Table 3 

shown how the reduction of the ternary and quaternary measures is fulfilled. It is important to 

highlight, that to compute the ternary and quaternary measures is mandatory to select at least one 

(dis)-similarity metric, except for the calculation of the measures of Volume, Bond Angle and 

Dihedral Angle. This selected metric is also used when the n-way measures are reduced to 

considerer relations between two atoms. 

Table 2. Measures used to compute the ternary (A) and quaternary (B) relations among atoms of 

a molecule. 
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B)     Quaternary Measures (QQXYZW) 
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Table 3. Reduction of the ternary and quaternary measures to compute the n-way relations among 

atoms of a molecule 

Quaternary Measure (Qijlh)  Ternary Measure (Tijl)  Distance Metric (Dij) 

Perimeter (quadrilateral)  Perimeter (triangle)  Distance between two atoms 

Volume  Triangle Area  Distance between two atoms 

Summation Sides (three sides)  Summation Sides (two sides)  Distance between two atoms 

Dihedral Angle  Bond Angle  0 

 

The matrices 𝔾𝑘, 𝔾𝕋𝑘 and 𝔾ℚ𝑘 for k ≥ 2 are calculated multiplying the coefficients 
1k

ijg , 
1k

ijlgt  

and 
1k

ijlhgq  of the matrices 𝔾𝑘−1, 𝔾𝕋𝑘−1 and 𝔾ℚ𝑘−1, respectively, by the corresponding coefficients 

1

ijg , 
1

ijlgt  and 
1

ijlhgq  of the matrices 𝔾1, 𝔾𝕋1 and 𝔾ℚ1, respectively. So, the elements of the matrix 

𝔾𝑘 will be equal to  kijg1
, the elements of the matrix 𝔾𝕋𝑘 will be equal to  kijlgt1

 and the elements 



of the matrix 𝔾ℚ𝑘 will be equal to  kijlhgq1
. When algebraic transformations to normalize the 

elements of these matrices are not applied, then these are designated as kth non-stochastic two-

tuples spatial-(dis)similarity matrix (NS-SDSM, 𝔾𝑛𝑠
𝑘), kth non-stochastic three-tuples spatial-

(dis)similarity matrix (NS-T-SDSM, 𝔾𝕋𝑛𝑠
𝑘) and kth non-stochastic four-tuples spatial-

(dis)similarity matrix (NS-Q-SDSM, 𝔾ℚ𝑛𝑠
𝑘). 

The proposed matrices 𝔾𝑘, 𝔾𝕋𝑘 and 𝔾ℚ𝑘 can be considered as generalized matrices.18 These 

matrices are computed through the Hadamard matrix product and are obtained by raising the 

matrix elements both to positive or negative exponents. When the exponent k is negative then is 

computed the reciprocal to each entry of the n-tuples matrices, except for the diagonal elements 

when the numbers of lone-pairs is considered. The k values corresponds to non-covalent 

interactions among atoms of a molecule and its maximum value (k = -12) is related with the 

Lennard-Jones potential. 

 

3. Normalization Formalisms based on Simple-Stochastic, Double-Stochastic and Mutual 

Probability Schemes. 

With the purpose of normalize the non-stochastic n-tuples matrices [𝔾𝑘, 𝔾𝕋𝑘 and 𝔾ℚ𝑘] are 

applied three probability schemes which are associated with inter-atomic interactions in the 

chemical structures. The probabilistic transformations have been used in other frameworks with 

successful results although these are not commonly employed in chemo-informatics studies.7, 23-26 

In this work are used the kth simple-stochastic two-tuples spatial-(dis)similarity matrix (SS-

SDSM, 𝔾𝑠𝑠
𝑘), kth simple-stochastic three-tuples spatial-(dis)similarity matrix (SS-T-SDSM, 

𝔾𝕋𝑠𝑠
𝑘) and kth simple-stochastic four-tuples spatial-(dis)similarity matrix (SS-Q-SDSM, 𝔾ℚ𝑠𝑠

𝑘). 

The coefficients 
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respectively, are calculated as follows: 
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where, 
k

ijns g , 
k

ijlns gt  and 
k

ijlhns gq  are the elements of the matrices 𝔾𝑛𝑠
𝑘, 𝔾𝕋𝑛𝑠

𝑘 and 𝔾ℚ𝑛𝑠
𝑘 

respectively, 𝑆𝑗 is the summation of the coefficients of the row i in the matrix 𝔾𝑛𝑠
𝑘 or the spatial 

(dis)similarity vertex degree of order k for the atom i, and 𝑆𝑗𝑙 and 𝑆𝑗𝑙ℎ is the summation of all 

entries of the two- and three-tuples matrices corresponding to each atom i in the non-stochastic n-

tuples matrices 𝔾𝕋𝑛𝑠
𝑘 and 𝔾ℚ𝑛𝑠

𝑘, respectively. 

From these simple-stochastic algebraic transformations are obtained non-symmetric matrices 

and thus other approach to considerer is a double-stochastic scaling where the sum of the elements 

of each row and column is equal to 1. However, for the n-tuples matrices  2n  does not exist 

reported algorithms to perform this transformation. Therefore, only have been employed the kth 

double-stochastic two-tuples spatial-(dis)similarity matrix (DS-SDSM, 𝔾𝑑𝑠
𝑘) which is computed 

through the Sinkhorn and Knopp algorithm.27  

Lastly, the kth mutual-probability two-tuples spatial-(dis)similarity matrix (MP-SDSM, 

𝔾𝑚𝑝
𝑘), kth mutual-probability three-tuples spatial-(dis)similarity matrix (MP-T-SDSM, 𝔾𝕋𝑚𝑝

𝑘) 

and kth mutual-probability four-tuples spatial-(dis)similarity matrix (MP-Q-SDSM, 𝔾ℚ𝑚𝑝
𝑘) are 

used. With the mutual-probability transformation are obtained matrices where the summation of 

all entries is equal to 1. The coefficients 
k

ijm p g , 
k

ijlm p gt  and 
k

ijlhmpgq  corresponding to 𝔾𝑚𝑝
𝑘, 𝔾𝕋𝑚𝑝

𝑘 

and 𝔾ℚ𝑚𝑝
𝑘, respectively, are computed as follows: 
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where, ijS , ijlS and ijlhS are the sample spaces belonging to the matrices 𝔾𝑛𝑠
𝑘, 𝔾𝕋𝑛𝑠

𝑘 and 𝔾ℚ𝑛𝑠
𝑘 

respectively. The three sample spaces are computed by summing all elements of their respective 

matrices. 

 

4. Local-Fragment (group, atom-type) N-tuples Spatial-(Dis)Similarity Matrices. 

The previous n-tuples matrices used to represent the relations among two, three and four atoms 

( 𝔾𝑛𝑠[𝑠𝑠,𝑑𝑠,𝑚𝑝]
𝑘, 𝔾𝑛𝑠[𝑠𝑠,𝑚𝑝] 𝕋𝑘, 𝔾𝑛𝑠[𝑠𝑠,𝑚𝑝] ℚ𝑘) can be also employed to codify information related 

with groups or atom-types belonging to a specific molecular fragment F. In this way, are utilized 

the kth local-fragment two-tuples, three-tuples and four-tuples spatial-(dis)similarity matrices, 

𝔾𝕋𝐹
𝑘

𝑛𝑠[𝑠𝑠,𝑚𝑝]  , 𝔾𝕋𝐹
𝑘

𝑛𝑠[𝑠𝑠,𝑚𝑝]  and 𝔾ℚ𝐹
𝑘

𝑛𝑠[𝑠𝑠,𝑚𝑝] , respectively. The elements of these local-fragment 

matrices are computed as shown below: 
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erwise       oth                                                                         

ent Fs to fragmtom belong  if one agt                                                              

ment Fgs to fragtoms belon  if two agt                                                              

ent Fs to fragmoms belonge three at     if thgt    gt                          

k

ijlns[ss,mp]

k

ijlns[ss,mp]

k

ijlns[ss,mp]

k

ijlFns[ss,mp]

0

3

1

3

2

               









                                   (21) 

otherwise                                                                                     
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where, the coefficients 
k

ijFm pdsssns g],,[ , 
k

ijlFm pssns gt],[  
and 

k

ijlhFm pssns gq],[ are the values of the local-

fragment matrices 𝔾𝕋𝐹
𝑘

𝑛𝑠[𝑠𝑠,𝑚𝑝]  , 𝔾𝕋𝐹
𝑘

𝑛𝑠[𝑠𝑠,𝑚𝑝]  and 𝔾ℚ𝐹
𝑘

𝑛𝑠[𝑠𝑠,𝑚𝑝] , respectively, and the elements 



k

ijm pdsssns g],,[ , 
k

ijlm pssns gt],[  
and 

k

ijlhmpssns gq],[  are the (dis)similarity values represented in the total 

matrices 𝔾𝑛𝑠[𝑠𝑠,𝑑𝑠,𝑚𝑝]
𝑘, 𝔾𝑛𝑠[𝑠𝑠,𝑚𝑝] 𝕋𝑘, 𝔾𝑛𝑠[𝑠𝑠,𝑚𝑝] ℚ𝑘, respectively. 

It is important highlight that to the local-fragment matrices can be applied the algorithms 

specified in the Eqs. 4-6 and in this way determine the kth atom-level local-fragment matrices, 

𝔾𝕋𝐹
𝑎,𝑘

𝑛𝑠[𝑠𝑠,𝑚𝑝]  , 𝔾𝕋𝐹
𝑎,𝑘

𝑛𝑠[𝑠𝑠,𝑚𝑝]  and 𝔾ℚ𝐹
𝑎,𝑘

𝑛𝑠[𝑠𝑠,𝑚𝑝] . Therefore, these matrices can be used to 

compute the atom-level molecular indices for each atom “a” of a molecule, which are represented 

in the local-fragment LOVIs vector, 𝐿𝑎𝐹 . In this way, the kth local-fragment bilinear, quadratic, 

linear, three-linear and four-linear indices are calculated applying the aggregation operators over 

the atom-level local-fragment vector 𝐿̅𝐹 . 

In this software, the local-fragment MDs can be calculated by seven chemical (or functional) 

groups in the molecule, these are: hydrogen bond acceptors (A), carbon atoms in aliphatic chains 

(C), hydrogen bond donors (D), halogens (G), terminal methyl groups (M), carbon atoms in 

aromatic portion (P) and heteroatoms (O, N and S in all valence states, denoted as X). 

 

5. N-tuples Constraints to Consider Interactions According to Topological and/or Euclidean 

Geometric Distances. 

The total (or local-fragment) matrices used to compute the total (or local-fragment) molecular 

descriptors always consider all interactions among atoms of a molecule. However, in the literature 

have been reported several transformations to the geometry matrix to take into account both 

topological as topographic aspects in the same representation. In this way, two different constraints 

both for the total and local QuBiLS-MIDAS indices are applied: 

1) N-tuples Graph-theoretical cut-off (p) based on topological distance at a lag p, denoted as 

“path cut-off”. 

2) N-tuples Geometric cut-off (l), based on Euclidean distance at a lag l known as “length cut-

off”. 

Through the application of these constraints are obtained the two-, three- and four-tuples 

topological and geometric neighborhood quotient matrices, denoted as, ℕℚ𝔾1, ℕℚ𝔾𝕋1 and 

ℕℚ𝔾ℚ1, respectively. The values of these matrices are the coefficients of the total (or local-

fragment) matrices multiplied by a rate according to the amount interactions that have their 



topological and/or geometric distances smaller or equals to a predefined thresholds p and/or l. The 

neighborhood quotient matrices are computed as follows: 

otherwise  0         
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otherwise           0
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otherwise            0
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where, 
k

ijm pdsssns g],,[ , 
k

ijlm pssns gt],[  
and 

k

ijlhmpssns gq],[ represents the pair-wise, ternary and quaternary 

relations among the corresponding atoms (see Eqs. 7-9), and pXX and lYY are the user-defined 

thresholds corresponding to topological and geometrical (Euclidean) distances, respectively. Min 

and Max means the minimum and maximum cut-offs (rank). 

In similar way to the reduction of the ternary and quaternary measures when the atoms taken 

into account are not all different (see Eqs. 11 and 13), the calculation of the three- and four-tuples 

topological and geometric neighborhood quotient matrices can also be reduced. So, when the 

considered atoms in the four-tuples constraint (see Eq. 25) are not distinct then can be applied the 

three-tuples constraint (see Eq. 24), and if the three atoms in this last case are not different then 

can be applied the two-tuples constraint (see Eq. 23). 

These new truncated matrices, ℕℚ𝔾1, ℕℚ𝔾𝕋1 and ℕℚ𝔾ℚ1, also constitute classes of the 

generalized matrices (see above) and thus can be used to compute QuBiLS-MIDAS indices. 



Moreover, it is important remark that the use of the constraints is not mandatory for the calculation 

of the described indices in this work. 
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