QUBILS-MIDAS 3D-DESCRIPTORS

1. Mathematical Definition.

The QuBILS-MIDAS molecular 3D-indices® ? are computed from the atomic contribution of
each atom in a molecule. In this way, if a molecule consists of n atoms, then the k™ two-linear,
three-linear and four-linear indices for atom “a” are calculated as n-linear algebraic maps® #

(forms) in R", in a canonical basis set, and are expressed by the following equations, respectively:

mLq = ma,k(f’:)—/) = gij’ x'yj = [X]T (Ga'k[y] (1)

n
trLa = tra'k(f, ¥, Z_) — Z gt{‘j’lkxiyjzl =GQT%* . % - y-Z (2)

n n
zz gqu’lkxiyjzlwh =GQ** - x-y-z-w (3)

h
where, “a” indicates the atom (a = 1,2, ...,n), n is the number of atoms in a molecule, L, is the

entry corresponding to the contribution of the atom “a” in the vector of atom-level indices L
[designated here by the well-known acronym: LOVI (LOcal Vertex Invariant)]® © and x%,...,x",

yh ..M 24 . 2" and wh, ..., w" are the coordinates or components of the molecular vectors x, y, z

and w in a system of canonical (‘natural’) basis vectors of R".

The use of molecular vectors based on atomic properties as representation of the chemical
structures has been used in other works.”1° As can be noticed, these molecular vectors are weighted
with different “standard” atom- and fragment-based properties (weights) for atoms in a molecule
and thus several combinations of algebraic forms are obtained (see Table 1). The weighting
schemes (properties) used are the following: 1) atomic mass (M), 2) the van der Waals volume
(V), 3) the atomic polarizability (P), 4) atomic electronegativity in Pauling scale (E), 5) atomic
Ghose-Crippen LogP (A),'*"1 6) atomic charge (C) (Gasteiger-Marsili),** 7) atomic polar surface

area (PSA),® 8) atomic refractivity (R),'"** 9) atomic hardness (H) and 10) atomic softness (S).



Table 1. N-linear algebraic forms implemented in the QuUBILS program.
1. Two-_l inear [m*(x, y)] : """ Js'e; ;y'r;b'oIs """"" :
B Ll_n_ear X, Y=1) | 1: Using the unitary vector |
- Blllnear_(X <>Y) ! <>: Using different properties '
- Quadratic (X =) : !
1 1
1 1

: Using equal properties
2. Three-linear [tr*(x,y,2] = ~~TTTTTTTToTooToomooooes
- Threelinear (X <> Y <> 2)

- Threelinear-Quadratic-Bilinear (X = Y) <> Z)

- Threelinear-Bilinear (X <>Y, Z =1)

- Threelinear-Linear (X, Y =1,Z=1)

- Threelinear-Cubic (X =Y =2)

3. Four-linear [qu*(x,y,Z,w)]
- Fourlinear (X <>Y <>Z <> W)
- Fourlinear-Quadratic-Threelinear (X = Y) <> Z <> W)
- Fourlinear-Threelinear (X =1,Y <>Z <> W)
- Fourlinear-Cubic-Bilinear (X =Y =Z) <> W)
- Fourlinear-Bilinear (X =Y =1,Z<>W)
- Fourlinear-Linear (X=Y =Z=1, W)
- Fourlinear-Quadruple (X =Y =Z =W)

The coefficients 9, gt5“ and gqiy are the elements of the k™ two-tuples, three-tuples and

four-tuples atom-level spatial-(dis)similarity matrices, G**, GT** and GQ%* for atom “a”,
respectively. In this way, if each one of the k™ two-tuples [three-tuples, four- tuples] atom-level
matrices for a molecule are summed, then is obtained the corresponding k™ two-tuples [three-
tuples, four-tuples] total spatial-(dis)similarity matrix, G* [GT*, GQ*] (see section 2 for
mathematical definition). Therefore, each atom-level matrix define an atom-level index for atom

“a” (see Eqs. 1-3). Lastly, the coefficients 9", gt3* and gq are obtained from the coefficients

gi'} of the G, g'[fj‘;k of the GT* and gqf};ﬁf of the GQ¥, respectively, as follows:
gi* =g  if e two atoms are equals atom “a"
= % g if one aom is equal to atom "a" %)

=0 oherwise



gti?fk = gtijk-, if the three atoms are equals to atom "a"

= % gti'}, if two atoms are equals to atom "a"

; (®)
=3 gt;, if one atam is equalto atom "a"
=0  otherwise
9oy =90y, if the four atoms are equals to atom "a"
= % gy, if three atoms are equals to atom "a”
= % gy, if two atoms are equals to atom "a" (6)

= % gqi'},h if one atam is equal to atom "a"

=0 otherwise
Finally and right from the previous definitions (see Egs. 1-3), the k" total (whole-molecule)
bilinear, quadratic, linear, three-linear and four-linear indices (QuBiLS-MIDAS MDs) can be
calculated applying a set of aggregation operators (also called invariants) defined in the reports®®
17 to the vector of atomic contributions, L, for instance: the sum of the atom-level indices

(components of L) to aggregate the information captured by them.

2. N-tuples Spatial-(Dis) Similarity Matrices to Represent 3D-Information of the Chemical
Structures.

The codification of 3D information of the chemical structures to compute the proposed indices
is performed through the k™ two-tuples, three-tuples and four-tuples spatial-(dis)similarity
matrices [G*, GT* and GQ*] for the relations among two, three and four atoms respectively (see
Eqgs. 1-3). The superscript k indicates the power to which G, GT and GQ are raised. In this way,
for k = 0 all entries of the matrices G°, GT? and GQ° have value 1 and for k = 1 the coefficients
gﬁ gtiljI and gqﬁ,h corresponding to the matrices G, GT* and GQ? represent the information of
the interactions among two, three and four atoms respectively. The definition of the coefficients

gi, Ot and 9a;, is shown below:



gilj = Dij I # J
=L; i=jand lone-pairsare considered (or D,,) @)
=0 otherwise

gty =TT, ifatoms i jand | arenot equal
=Ly i=j=Iand lone-pairsare considered (or D,,) 8
=0 otherwise
gqiljIh =QQy, if atoms i, j, I andh are notequal
=Ly, i=]j=I=hand lone-pairs are considered (or D,) )
=0 otherwise

where, D; is the (dis)-similarity between atomic nuclei i and j (see Table 1), TT;; is an measure
for ternary relations of atoms and QQj,, is an measure for quaternary relations of atoms. The

coefficients L, L and Ly, represents the diagonal entries of the matrices G*, GT" and GQ"

respectively, which for a greater discrimination of the molecular structures could have assigned
two different values: 1) the number of lone-pairs electrons for atoms, or 2) the Euclidean spatial

distance, D,, for each atom i and center of the molecule, o.

Table 1. Metrics used to compute the “distance” between two atoms of a molecule.

Metrics Formula® Range®  Average Range
Minkowsky (m1-m7)
p=0.25,0.5,1,1.5,2,2.5,3,and o
[where, when p= 1 it is the 1
Manbhattan, city-block or taxi distance h »\P
dyy = <Zj_1|xj -yl )

(also known as Hamming distance = dyy
between binary vectors) and p = 2 is [0, o0) d= YA [0, )
Euclidean distance) n’p
Chebyshev/Lagrange (m8) _ _
(Minkowsky formula when p = o) dyy = max{|x; — ]}
dyy = Zh |xj - yj| - dxy
Canberra (m10) Xy j=1 %] + |y [0,n] d= — [0,1]
d — Z;l:llxj B y]| d 1
Lance - Williams/Bray-Curtis (m11) XY (] + 1)) [0,1] d= % [0,;]
Clark/Coefficient of "y d
ark/Coefficient o dyv = Z <7) s _ Oxy
Divergence (m12) w =i \|xi| + |y] [0,n] d= Vn [0, vn]



dy =2y mme/ d 1
Soergel (m13) XY = q j=1max{x;, y;} [0,1] d= % [0,;]
h 2 d
Bhattacharyya (m14) dxy = Zj=1(‘/?j =) [0, 0) d= % [0, )
n
4 _ Zh _ min{xj,yj} ~ de
Wave — Edges (m15) XY j=1 max{x;, y;} [0,n] d=—"= [0,1]

dXY = 1 - COSXY

where,
. . XY
Angular Separation/[1-Cosine CoSyy = ——
(Ochiai)] (m16) X XTIV (02]

h 2 h 2
j=1% Lj-1Yj

&The variable x;(y;) is the value of the coordinate j of the atom s and the atom t, corresponding to the molecule X (Y),
respectively. The h value is the Cartesian coordinates (X, y, z) of an atom. The p values in Minkowsky metric are 0.25,
0.5, 1 (Manhattan), 1.5, 2 (Euclidean), 2.5 and 3 (Minkowsky). "“Range” refers to “range” and not to “rank” and is
defined as Range = max{x;} — min{x;}.

As can be previously observed, the two-tuples spatial-(dis)similarity matrix of order 1 (G?)
constitute a generalization of the geometrical matrix'® where each entry only correspond to the

Euclidean distance!®?2 between two atoms. On the other hand and as can be analyzed, the sub-

indices i, j, | and h belonging to the ternary and quaternary measures (TT;;, QQ;,) represent the

atoms of the non-covalent interactions that are codified. Thus, the values of these sub-indices are
not always different whereby the distinct combinations of them are considered. In this way, the
three-tuples (or four-tuples) spatial-(dis)similarity matrices can be built using only ternary (or
quaternary) measures or as from the reducing of ternary (or quaternary) measures to the
corresponding inferior measures. Therefore, the following options are into accounted to build the
n-tuples matrices:
e Ternary relations:
T., three different atoms

3nC (non—complete): TT, =< " 10
( plete): TT, {0 otherwise 10)

T; three differentatoms
3C (complete): TT,, =4 D; two equal atoms and one different atom (11)

0 otherwise



e Quaternary relations:

Qi four different atoms
4nC (non—complete): QQ,, = _ 12)
0  othawise
Qi four different atoms
T, two equal atoms and two different atoms
4C (complete): QQ,, = (13

D; three equal atoms and one different atom
0 othemwise

where, 3C (or 4C) and 3nC (or 4nC) is the nomenclature assigned when the ternary (or quaternary)

measures can be or not reduced, respectively. In addition, Q,,, is the measure used to establish the

relation among four atoms (see Table 2B), T

;i 1S the measure used to establish the relation among

three atoms (see Table 2A), and D, is the distance between two atoms (see Table 1). Table 3

shown how the reduction of the ternary and quaternary measures is fulfilled. It is important to
highlight, that to compute the ternary and quaternary measures is mandatory to select at least one
(dis)-similarity metric, except for the calculation of the measures of Volume, Bond Angle and
Dihedral Angle. This selected metric is also used when the n-way measures are reduced to

considerer relations between two atoms.

Table 2. Measures used to compute the ternary (A) and quaternary (B) relations among atoms of
a molecule.

A) Triple Measures (TTxvz)

Measure Formula
Perimeter T =d +d +d
(m19-m20) XYZ Xy yz x
Triangle Area Tavz = /S5 —dxy s —dy; (s —dyx )
(m21-m22) S— dyy +dy, +dzy

2

Summation Sides

(m25-m26) Tyvz =dxy +dy;



A, A, A, coordinates of three atoms of a molecule

Bond angle U=A-A V=A-A
(Angle between sides)
(M27-m28) U*Vv

Ty, =a= arccos{

b

B) Quaternary Measures (QQxyzw)

Perimeter _
(M19-m20) Quvzw =y +0yz + 0z + Uy

A A, A, A, coordinates of four atoms of a molecule
Volume 1 A(l_AX1 AZl_AX1 ANl_AXl
(M23-m24) QXYZW ZE A«z_sz Azz_sz ANZ_AXZ

A(s - Axs Azs - Ax3 ANB - Axs

Summation Sides _
(M25-m26) Quvaw =y +0yz +0z

A, A, A, coordinates of three atoms of a molecule in the plane A
B, . B, . B, coordinates of three atoms of a molecule in the plane B

Dihedral Angle Uy =(Ac=A ) (AZ - Av)
(M29-m30) Uy =(By —A)x(B, - A)
- U,*Ug

QXYZW = arCCO{|UA|*|UB|j

Table 3. Reduction of the ternary and quaternary measures to compute the n-way relations among
atoms of a molecule

Quaternary Measure (Qijin) Ternary Measure (Tij) Distance Metric (Djj)

Perimeter (quadrilateral) Perimeter (triangle) Distance between two atoms

Volume Triangle Area Distance between two atoms
Summation Sides (three sides)

Dihedral Angle

Distance between two atoms
0

Summation Sides (two sides)
Bond Angle

20 2 2 2
N2 2 2\

The matrices G*, GT* and GQ¥ for k > 2 are calculated multiplying the coefficients gﬁ‘l, gt”ﬁ‘ '
and gqiﬁ(hl of the matrices G*~1, GT*~* and GQ*~1, respectively, by the corresponding coefficients

gi, Oty and Qg of the matrices G, GT* and GQ', respectively. So, the elements of the matrix

1

k
G* will be equal to (gﬁ)k , the elements of the matrix GT* will be equal to (gt,jl) and the elements



of the matrix GQ* will be equal to (gqiljlh)k. When algebraic transformations to normalize the

elements of these matrices are not applied, then these are designated as k™" non-stochastic two-
tuples spatial-(dis)similarity matrix (NS-SDSM, ,,G¥), k™" non-stochastic three-tuples spatial-
(dis)similarity matrix (NS-T-SDSM, ,,GT*) and k" non-stochastic four-tuples spatial-
(dis)similarity matrix (NS-Q-SDSM, ,,;GQF).

The proposed matrices G*, GT* and GQ¥ can be considered as generalized matrices.*® These
matrices are computed through the Hadamard matrix product and are obtained by raising the
matrix elements both to positive or negative exponents. When the exponent k is negative then is
computed the reciprocal to each entry of the n-tuples matrices, except for the diagonal elements
when the numbers of lone-pairs is considered. The k values corresponds to non-covalent
interactions among atoms of a molecule and its maximum value (k = -12) is related with the

Lennard-Jones potential.

3. Normalization Formalisms based on Simple-Stochastic, Double-Stochastic and Mutual
Probability Schemes.

With the purpose of normalize the non-stochastic n-tuples matrices [G*, GT* and GQ¥] are
applied three probability schemes which are associated with inter-atomic interactions in the
chemical structures. The probabilistic transformations have been used in other frameworks with
successful results although these are not commonly employed in chemo-informatics studies.” 2328

In this work are used the k™ simple-stochastic two-tuples spatial-(dis)similarity matrix (SS-
SDSM, (G¥), ki simple-stochastic three-tuples spatial-(dis)similarity matrix (SS-T-SDSM,
«sGT¥) and k™ simple-stochastic four-tuples spatial-(dis)similarity matrix (S5-Q-SDSM, ;GQ¥).
The coefficients ssgﬁ, . gti'}, and ssgqi'j,h corresponding to the matrices ((G*, (cGT* and (GQ¥,

respectively, are calculated as follows:

3 gil; gil;

k _
ssgij ~— e

> 2.9
-1

tk tk
; gtil;l _ ns9 i _ ns 9 ijl (15)

Sjl ZZ ns gtiljfl

=1 1=

(14)




ns gqiljflh — ns gqil;Ih

S SIS ggl,

j=1 1= h=1

ss gqi?lh = (16)

where, nsg:}, nSg'[i';I and nsgqﬁ.h are the elements of the matrices ,,G*, ,GT* and ,,GQF

respectively, S; is the summation of the coefficients of the row i in the matrix 2sG* or the spatial
(dis)similarity vertex degree of order k for the atom i, and S;; and S, is the summation of all
entries of the two- and three-tuples matrices corresponding to each atom i in the non-stochastic n-
tuples matrices ,,GT* and ,,;GQF, respectively.

From these simple-stochastic algebraic transformations are obtained non-symmetric matrices

and thus other approach to considerer is a double-stochastic scaling where the sum of the elements
of each row and column is equal to 1. However, for the n-tuples matrices (n>2) does not exist
reported algorithms to perform this transformation. Therefore, only have been employed the k™
double-stochastic two-tuples spatial-(dis)similarity matrix (DS-SDSM, 4,G*) which is computed
through the Sinkhorn and Knopp algorithm.?’

Lastly, the k™ mutual-probability two-tuples spatial-(dis)similarity matrix (MP-SDSM,
mz[,(G"), k™ mutual-probability three-tuples spatial-(dis)similarity matrix (MP-T-SDSM, mp(G’]I"‘)
and k™" mutual-probability four-tuples spatial-(dis)similarity matrix (MP-Q-SDSM, mpGQ") are
used. With the mutual-probability transformation are obtained matrices where the summation of

all entries is equal to 1. The coefficients mpgﬁ, mpgti‘}, and mpgqﬁlh corresponding to ,,,,,G*, ,,,,, GT*

and mp((}(@", respectively, are computed as follows:

k k
ol = — a7
229
i=1 j=1
tk tk
mpgti; — nsSg ijl — . nnsgn ijl (18)
i ZZZ ns gti?l
i=1l j=1 1=1
k k
mpgqil;m — nsgqijlh = n;gqijlh (19)

Si ZZZi ns 90

i=1 j=1 I=1 h=1



where, S;, S;and Sy, are the sample spaces belonging to the matrices ,,;G*, ,;GT* and ,,,GQ"

ij o Yijl
respectively. The three sample spaces are computed by summing all elements of their respective

matrices.

4. Local-Fragment (group, atom-type) N-tuples Spatial-(Dis)Similarity Matrices.
The previous n-tuples matrices used to represent the relations among two, three and four atoms
(nspss,asmp] G nspssmp1GTS, nspssmpi@QF) can be also employed to codify information related

with groups or atom-types belonging to a specific molecular fragment F. In this way, are utilized

the k™ local-fragment two-tuples, three-tuples and four-tuples spatial-(dis)similarity matrices,
ns(ssmp]GTE + nspss,mp]GTF @A pgrss mp) GQF, respectively. The elements of these local-fragment

matrices are computed as shown below:

= ns[ss,ds,mp]gi‘} if tre two atoms belongs to fragment F

1

= Ens[ss,ds,mp]gil; if one abm belongs to fragment F (20)

k
ns[ss,ds,m p]g ijF

=0 otherwise

nspsmpiOtie = nsgsmpiOtin  if tTe three atoms belongs to fragment F

2 i
= gns[sslmp]gt;, if two @oms belongs to fragment F
(21)
1 :
= gns[ss,mp]gti'ﬁ if one &om belongs to fragment F
=0 otrerwise
ns[ssm,]gqﬁth = ns[Ssm]gqi'},h if the four atoms belongs to fragment F
= %ns[ss’mp]gqi'j,h if threeatoms belongs to fragment F
= %ns[ss’mp]gqi'j,h if two aoms belongs to fragment F (22)
= %ns[ss’mp]gqg,h if one aom belongs to fragment F
=0 otherwise

where, the coefficients ns[ss,ds‘mp]gi‘}F, ns[ss.mp] gtijk-lF and gssmp] gq:}thare the values of the local-

fragment matrices (55 mpiGTF » nsgss,mpiGTE aNd 1gpss mp; GQE, respectively, and the elements

ss,mp



wgssdsm 0+ ngssmp Ot @00 s mp 905 @re the (dis)similarity values represented in the total

MALriCes ;555 asmp]Gr nsfssmpiGT: nspssmp;GQY, respectively.

It is important highlight that to the local-fragment matrices can be applied the algorithms
specified in the Egs. 4-6 and in this way determine the k™ atom-level local-fragment matrices,
nsissmpl GRS+ nspssmp]GTES and gpssmp)GQEY. Therefore, these matrices can be used to
compute the atom-level molecular indices for each atom “a”” of a molecule, which are represented
in the local-fragment LOVIs vector, L,. In this way, the k™ local-fragment bilinear, quadratic,
linear, three-linear and four-linear indices are calculated applying the aggregation operators over
the atom-level local-fragment vector fL.

In this software, the local-fragment MDs can be calculated by seven chemical (or functional)
groups in the molecule, these are: hydrogen bond acceptors (A), carbon atoms in aliphatic chains
(C), hydrogen bond donors (D), halogens (G), terminal methyl groups (M), carbon atoms in

aromatic portion (P) and heteroatoms (O, N and S in all valence states, denoted as X).

5. N-tuples Constraints to Consider Interactions According to Topological and/or Euclidean
Geometric Distances.

The total (or local-fragment) matrices used to compute the total (or local-fragment) molecular
descriptors always consider all interactions among atoms of a molecule. However, in the literature
have been reported several transformations to the geometry matrix to take into account both
topological as topographic aspects in the same representation. In this way, two different constraints
both for the total and local QuBiLS-MIDAS indices are applied:

1) N-tuples Graph-theoretical cut-off (p) based on topological distance at a lag p, denoted as
“path cut-off™.

2) N-tuples Geometric cut-off (1), based on Euclidean distance at a lag | known as “length cut-
off”.

Through the application of these constraints are obtained the two-, three- and four-tuples
topological and geometric neighborhood quotient matrices, denoted as, NQG!, NQGT* and
NQGQ?, respectively. The values of these matrices are the coefficients of the total (or local-

fragment) matrices multiplied by a rate according to the amount interactions that have their



topological and/or geometric distances smaller or equals to a predefined thresholds p and/or I. The

neighborhood quotient matrices are computed as follows:

<l <l

NQgi = g|lj If pmin < pij < pmax Or/and Im|n — "ij — "max (23)

=0 otherwise

NQgt”' gt'lll if Pmin < pij’ pj"p" < Prmax or/and Imln < IIJ IJI’III < Imax
= ggtl if Prmin < pij’ pj'(“) < Prnax or/and Imm < IIJ IJ|(Il) < Imax
37 i P <Py P < Puae OF/aNd 1 <11 <1 (24)

1

- ;gtijl if Prnin < plj(j”l) < Prax or/fand | . <I <1

min = liji ) = Tmax
=0 otherwise
Nng;m = gqiljlh I Proin < Pijs Pjis Pins Pri < Prmax OF/and 1 <l 1y b 1 < g
_ §9qilj|h {'f Prmin < Pijs Pjiny Pinhiy < Prmax or/fand |, < Iijv Ijl(lh)’ Ilh(hl) < ax
4 if Do <PjisPins Pri S Prax OF/and 1 <1y 1 L <,

5 if Prvin < Pijs Piignniy S Pmax OF/@NA - i <l 1y iy < Dpa

= quiljlh iF Do <Pjis Pingniy < Pmax OF/and 1 < Ly oy < e (25)
if Pryin < Pins Pri S Prmax OF/aNA- 1 <l 1y <y

4 gqulh If pmin < pij(jl li,hi) = pmax Or/and Imln = IIJ(]| Ih,hi) = Imax

=0 otherwise

where, ns[ssyds,mp]gi‘}, ns[ss.mp] gti'}, and ns[Ssm]gqi‘},h represents the pair-wise, ternary and quaternary

relations among the corresponding atoms (see Egs. 7-9), and pxx and lyy are the user-defined
thresholds corresponding to topological and geometrical (Euclidean) distances, respectively. Min
and Max means the minimum and maximum cut-offs (rank).

In similar way to the reduction of the ternary and quaternary measures when the atoms taken
into account are not all different (see Egs. 11 and 13), the calculation of the three- and four-tuples
topological and geometric neighborhood quotient matrices can also be reduced. So, when the
considered atoms in the four-tuples constraint (see Eq. 25) are not distinct then can be applied the
three-tuples constraint (see Eq. 24), and if the three atoms in this last case are not different then
can be applied the two-tuples constraint (see Eq. 23).

These new truncated matrices, NQG!, NQGT! and NQG®Q?, also constitute classes of the

generalized matrices (see above) and thus can be used to compute QUBILS-MIDAS indices.



Moreover, it is important remark that the use of the constraints is not mandatory for the calculation

of the described indices in this work.
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