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Theoretical aspects regarding the generation of the 

Bio-macro MDs for proteins 

1. Protein structural representations for geometric information extraction 

Spatial protein representations indicate the distribution of all amino acids present 

on the structure and allow the evaluation of their interactions.1 The goal of these 

graphical structures is the extraction of valuable information for explaining 

experimental observations and bulk behavior.2,3 Regarding the case of proteins, each 

amino acid from the spatial structure can be considered as a pseudo-vertex, which has 

spatial coordinates (x, y, z) defined by a carbon-atom representation. The importance of 

this pseudo-vertex approach is related to the structural simplification of the amino acid.4  

Alpha carbon representation (Cα) has been the most used representation for 

protein geometrical/topological studies, without providing evidence of why this 

representation was chosen3,5–7. Moreover, Beta carbon representation (Cβ) was 

considered as a simple atom(pseudo-node)-based representation in an article.8 

Considering these evidences, we have proposed two additional representations for 

protein spatial information extraction (Amide Carbon (AB) and the average of the 

coordinates of all atoms in the amino acid (AVG)) to observe the behavior and 

information content that these representations could bring respect the other existing 

representations (See Figure 1). 

2. Macromolecular vectors as weighting scheme 

The transformation of chemical structures in molecular vectors has been explained 

on detail by several authors.9–12 Regarding the case of proteins, this concept can be 

adapted by considering every amino acid on the structure as a compound element. Each 
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component of this macromolecular vector is a numerical value defined by a 

physicochemical property corresponding for each amino acid on the structure.13,14  

 
Figure 1. Numerical calculation example considering all protein representations 

proposed here, namely 1) alpha carbon (C), 2) beta carbon (Cβ), 3) amide carbon (AB) 

and 4) average of all atoms in the amino acid (AVG), employing the truncated peptide 

VG13P (pdb code: 5WRX). The two-tuple tensor (D-SDST) was calculated for every 

representation considering a Euclidean metric (M5), Non-Stochastic tensor (NS), k=1 and 

distance to the center was not considered (zii=0).  

 

These properties can be divided on 3 groups: steric, hydrophobic and electronic. 

Several examples are cited as follows: Isotropic contact area (ISA)15, Kyte-Doolittle 

hydropathy index (KDS)16, Hopp-Woods hydropathy index (HWS)17, electronic charge 

index (ECI)15, isoelectric point (PIE) 18, z parameters (Z1, Z2, Z3)
19, molecular volume 

(MV)20, alpha helix and beta sheet probability (PAH y PBS)1. All numerical values of 

these properties for every amino acid is shown in Table 1 (See Figure 2). 
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Figure 2. Numerical calculation example for the definition of macro-molecular vectors 

considering three different groups physicochemical properties (steric, hydrophobic and 

electronic), employing the truncated peptide 5WRX. All numerical values of these 

properties for every amino acid is shown in Table 1. 

 

Table 1. Physicochemical properties for the 20 elemental amino acids used for the 

computation of macromolecular vectors 

Amino acid Code 
z-scalea 

ISAb ECIc PIEd HWSe KDSf 
z1 z2 z3 

Alanine ALA 0.01 -1.73 0.09 62.9 0.05 6.01 -0.5 1.8 

Arginine ARG 2.88 2.52 -3.44 52.98 1.69 10.76 3 -4.5 

Asparagine ASN 3.22 1.45 0.84 17.87 1.31 5.41 0.2 -3.5 

Aspartate ASP 3.64 1.13 2.36 18.46 1.25 2.77 3 -3.5 

Cysteine CYS 0.71 -0.97 4.13 78.51 0.15 5.07 -1 2.5 

Glutamate GLU 3.08 0.39 -0.07 30.19 1.31 3.22 0.2 -3.5 

Glutamine GLN 2.18 0.53 -1.14 19.53 1.36 5.65 3 -3.5 

Glycine GLY 2.23 -5.36 0.3 19.93 0.02 5.97 0 -0.4 

Histidine HIS 2.41 1.74 1.11 87.38 0.56 7.59 -0.5 -3.2 

Isoleucine ILE -4.44 -1.68 -1.03 149.77 0.09 6.02 -1.8 4.5 

Leucine LEU -4.19 -1.03 -0.98 154.35 0.01 5.98 -1.8 3.8 

Lysine LYS 2.84 1.41 -3.14 102.78 0.53 9.74 3 -3.9 

Methionine MET -2.49 -0.27 -0.41 132.22 0.34 5.74 -1.3 1.9 

Phenylalanine PHE -4.92 1.3 0.45 189.42 0.14 5.48 -2.5 2.8 

Proline PRO -1.22 0.88 2.23 122.35 0.16 6.48 0 -1.6 

Serine SER 1.96 -1.63 0.57 19.75 0.56 5.68 0.3 -0.8 

Threonine THR 0.92 -2.09 -1.4 59.44 0.65 5.87 -0.4 -0.7 

Tryptophan TRP -4.75 3.65 0.85 179.16 1.08 5.89 -3.4 -0.9 

Tyrosine TYR -1.39 2.32 0.01 132.16 0.72 5.66 -2.3 -1.3 

Valine VAL -2.69 -2.53 -1.29 120.91 0.07 5.97 -1.5 4.2 
aZ-scale (Hellberg et al., 1987), bSide-chain isotropic surface area (Collantes and Dunn III, 1995), 
cAtomic charge (Collantes and Dunn III, 1995), dIsoelectric point (Hellberg et al., 1987), eHoop-

Woods hydropathy index (Hopp and Woods, 1981), fKyte-Doolittle hydropathy index (Kyte and 

Doolittle, 1982). 

3. Spatial-Dis-Similarity Tensor generation 

The spatial information extraction from a protein could be achieved by using a 

geometrical matrix which is defined by transforming the existing relationships between 

every element (amino acid) and its neighbors into numbers that represent such relation. 

5,21,22.  

An order two geometrical tensor, is a generalized spatial matrix that extracts the 

information of a 3D protein structure by using a metric as a function for the distance 
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between two amino acids.23 For the application of this mathematical concept, a defined 

protein structural representation (Section 1) is required.  

 

Table 1. Physicochemical properties for the 20 elemental amino acids used for the 

computation of macromolecular vectors (continued) 
Amino acid Code MVg PAHh PBSi 

Alanine ALA 88.6 1.29 0.9 

Arginine ARG 173.4 0.96 0.99 

Asparagine ASN 114.1 0.9 0.76 

Aspartate ASP 111.1 1.04 0.72 

Cysteine CYS 108.5 1.11 0.74 

Glutamate GLU 143.8 1.44 0.75 

Glutamine GLN 138.4 1.27 0.8 

Glycine GLY 60.1 0.56 0.92 

Histidine HIS 153.2 1.22 1.08 

Isoleucine ILE 166.7 0.97 1.45 

Leucine LEU 166.7 1.3 1.02 

Lysine LYS 168.6 1.23 0.77 

Methionine MET 162.9 1.47 0.97 

Phenylalanine PHE 189.9 1.07 1.32 

Proline PRO 112.7 0.52 0.64 

Serine SER 89 0.82 0.95 

Threonine THR 116.1 0.82 1.21 

Tryptophan TRP 227.8 0.99 1.14 

Tyrosine TYR 193.6 0.72 1.25 

Valine VAL 140 0.91 1.49 
gSide-chain amino acid volume (Zamyatnin, 1972), h,i Relative 

frequencies with which an amino acid appear forming α-

helices, and β-sheets, respectively (Mathews et al., 2000) 

 

An order three geometrical tensor is a generalized set of order two tensors that 

extract the information of a 3D protein structure by the use of multi-metrics as a 

strategy to define relationships between 3 amino acids.24 The detailed definitions of 

metric and multi-metric will be discussed in section 3.1.  

These geometrical tensors consider additional mathematical tools for 

generalization such as interaction ponderation considering a Haddamard matrix product 

(section 3.2.), normalization procedures for tensor standardization (simple stochastic 

and mutual probability) (section 3.3.) and topological and geometrical cut-offs which 

look to define the effect of certain proteins regions on the information extracted (section 
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3.4.). These operations result on obtaining the two-tuple Spatial-Dis-Similarity Tensor 

(D-SDST) ( ℤ𝐷 ) and three-tuple Spatial-Dis-Similarity Tensor (T-SDST) ( ℤ𝑇 ) (See 

Figure 3). 

 
Figure 3. Numerical calculation example considering a two-tuple spatial dis similarity 

tensor (D-SDST) and a three-tuple spatial dis similarity tensor (T-SDST) employing the 

truncated peptide 5WRX. The two-tuple tensor was calculated considering an amide 

carbon protein representation (AB), a Euclidean metric (M5), Non-Stochastic tensor 

(NS), k=1 and distance to the center was not considered. The three-tuple tensor was 

calculated considering an amide carbon protein representation (AB), a Perimeter multi-

metric (M37), Non-Stochastic tensor (NS), k=1 and distance to the center was not 

considered.  

 

3.1. Metrics and Multi-metrics for geometric matrix inter-amino acid interaction 

generalization 

3.1.1. Metric 

A metric or a distance function is a mathematical expression that defines a 

distance between two elements (a,b) from a defined set. A metric has to fulfill the 

following conditions.25 

i.) d(a,b)  0                         (it has to be positive) 

ii.) d(a,b) = d(b,a)                  (it has to be symmetric) 
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iii.) d (a,b)  d(a,c)+d(c,b)   (it has to fulfill the triangle inequality) 

iv.)  d (a,b) = 0 if a=b             (it has to fulfill the identity axiom) 

(1) 

Metrics are essential elements in a variety of areas in science such as graph theory, 

molecular biology, among others.23,26.  

Table 2 presents all the metrics available for calculation of the proposed MDs on 

the software (See Figure 4).  

 
Figure 4. Numerical calculation example considering 4 different types of metrics applied 

to obtain a two-tuple spatial dis similarity tensor (D-SDST) employing the truncated 

peptide 5WRX. The two-tuple tensor was calculated considering an amide carbon protein 

representation (AB), Non-Stochastic tensor (NS), k=1 and distance to the center not 

considered. The metrics considered for this example were: Euclidean metric (M5), Lance-

Williams (M11), SL-Like (M17) and Proportionality corrected (M32) 

 

3.1.2. Multi-metric 

A multi-metric is a generalization of the metric concept since it seeks for 

relationships between two or more elements. The mathematical definitions for 

proposing an element as multi-metric are shown below, considering the notation 

proposed by Warrens 24: 

Let be, 𝑥1,𝑘 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘), a k-uple and let be, 𝑥1,𝑘
−𝑖 =

(𝑥1, 𝑥2, 𝑥𝑖−1, 𝑥𝑖+1… , 𝑥𝑘), the (k-1)-uple, where the minus sign on the index 𝑥1,𝑘
−𝑖  is used 

to indicate that this object has been removed from the k-uple. From this point, a multi-

metric can be defined as a dis-similarity measure that satisfies the following conditions:  
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i.) (𝑘 − 1)𝑑𝑘(𝑥1,𝑘) ≤ ∑ 𝑑𝑘(𝑥1,𝑘+1
−𝑖 )𝑘

𝑖=1  (polyhedral inequality) 

ii.) 𝑑𝑘(𝑥1, 𝑥1,𝑘−1) = 𝑑𝑘(𝑥1,2, 𝑥2,𝑘−1, ) = ⋯ = 𝑑𝑘(𝑥1,𝑘−1, 𝑥𝑘−1) (invariant condition) 

iii.) 𝑑𝑘−1(𝑥1,𝑘−1) =
1

𝑝
𝑑𝑘(𝑥1, 𝑥1,𝑘−1)  

iv.) 𝑑𝑘(𝑥1, 𝑥1,𝑘−1) ≤ 𝑑𝑘(𝑥1, 𝑥2,𝑘)  

 

 

(2) 

Table 3, Table 4, Table 5 and Table 6 presents all the groups of multi-metrics 

available for calculation (See Figure 5). These tables are shown below.  

 
Figure 5. Numerical calculation example considering 3 different types of multi-metrics 

applied on a three-tuple spatial dis similarity tensor (T-SDST) employing the truncated 

peptide 5WRX. The three-tuple tensor was calculated considering an amide carbon 

protein representation (AB), Non-stochastic tensor (NS), k=1, and distance to the center 

was not considered. The multi-metrics considered for this example were: Summation 

Sides (M37), Min-Rule (M41) and Sum-Rule (M59).  
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Table 2. Metrics available for the calculation of the novel 3D algebraic MDs for proteins. 

In bold, the software ID number of the multi-metric is indicated.  
Coefficient Code Range Formula 

Minkowski 

r = 0.25, 0.5, 1, 1.5, 2, 2.5 and 3  

(where, when r = 1 is general metric is 

Hamming distance (also known as 

Manhattan, city-block or taxi distance) 

and r = 2 is Euclidean distance) 

M1-M7 ∞ to 0 𝑑𝑠𝑡 = 〈∑〈|𝑋𝑠𝑗 − 𝑋𝑠𝑡|〉
𝑟

𝑃

𝑗=1

〉
1
𝑟  

Chebyshev/Lagrange 

(Minkowski formula when r = ∞) 
M8 ∞ to 0 𝑑𝑠𝑡 = max|𝑋𝑠𝑗 − 𝑋𝑡𝑗| 

Minkowski 

(also known as power distance) 

r value can be defined by user  

M9 ∞ to 0 𝑑𝑠𝑡 = 〈∑〈|𝑋𝑠𝑗 − 𝑋𝑠𝑡|〉
𝑟

𝑃

𝑗=1

〉
1
𝑟  

Canberra M10  𝑑𝑠𝑡 =∑
|𝑋𝑠𝑗 − 𝑋𝑡𝑗|

|𝑋𝑠𝑗| + |𝑋𝑡𝑗|

𝑃

𝑗=1

 

Lance-Williams/Bray-Curtis M11  𝑑𝑠𝑡 =
∑ |𝑋𝑠𝑗 − 𝑋𝑡𝑗|
𝑃
𝑗=1

∑ 〈|𝑋𝑠𝑗| + |𝑋𝑡𝑗|〉
𝑃
𝑗=1

 

Clark M12  𝑑𝑠𝑡 = √∑〈
𝑋𝑠𝑗 − 𝑋𝑡𝑗

|𝑋𝑠𝑗| + |𝑋𝑡𝑗|
〉2

𝑃

𝑗=1

 

Soergel M13  𝑑𝑠𝑡 = |
∑ |𝑋𝑠𝑗 − 𝑋𝑡𝑗|
𝑃
𝑗=1

∑ max(𝑋𝑠𝑗 , 𝑋𝑡𝑗)
𝑃
𝑗=1

| 

Bhattacharyya M14  𝑑𝑠𝑡 = √∑(√|𝑋𝑠𝑗| − √|𝑋𝑡𝑗|)
2

𝑃

𝑗=1

 

Wave-Edges M15  𝑑𝑠𝑡 = |∑(1 −
min(𝑋𝑠𝑗 , 𝑋𝑡𝑗)

max(𝑋𝑠𝑗 , 𝑋𝑡𝑗)
)

𝑃

𝑗=1

| 

Angular Separation/  

[1-Cosine (Ochiai)] 
M16 0 to 1 

𝑑𝑠𝑡 = 1 −
∑ (𝑋𝑠𝑗 ∗ 𝑋𝑡𝑗)
𝑃
𝑗=1

√∑ 𝑋𝑠𝑗
2 ∗ √∑ 𝑋𝑡𝑗

2𝑃
𝑗=1

𝑃
𝑗=1

 

SL-Like  M17 0 to 1 𝑑𝑠𝑡 =
1

𝑝
∑

|𝑥𝑠𝑗 − 𝑥𝑡𝑗|

(𝑥𝑠𝑗 + 𝑥𝑡𝑗)

𝑝

𝑗=1

 

Average Euclidean M18  
𝐸𝑀𝑋𝑌 =

√∑ |𝑥𝑗 − 𝑦𝑗|
2𝑛

𝑗=1

𝑛
 

Squared Euclidean coefficient M19  𝐸𝐶𝑋𝑌 =∑|𝑥𝑗 − 𝑦𝑗|
2

𝑛

𝑗=1
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Table 2. Multi-metrics available for the calculation of the novel 3D algebraic MDs for 

proteins. In bold, the software ID number of the multi-metric is indicated. (continued) 

Coefficient Code Range Formula 

Pearson correlation  M20 -1 to 1 
𝑟𝑋𝑌 =

∑ (𝑥𝑗 − 𝑋)(𝑦𝑗 − 𝑌)𝑛
𝑗=1

√∑ (𝑥𝑗 − 𝑋)
2𝑛

𝑗=1 ∑ (𝑦𝑗 − 𝑌)
2𝑛

𝑗=1

 

Cosine coeficient/ 

Ochiai coefficient (essentially 

equivalent to the Carbo index for 

overlap of electron density 

functions.  

M21 -1 to 1 
𝐶𝑜𝑠𝑋𝑌 =

∑ 𝑥𝑗𝑦𝑗
𝑛
𝑗=1

√∑ 𝑥𝑗
2𝑛

𝑗=1 × ∑ 𝑦𝑗
2𝑛

𝑗=1

 

Fossum M23 0 to ∞ 𝐹𝑋𝑌 =
𝑛 (∑ 𝑥𝑗𝑦𝑗

𝑛
𝑗=1 −

1
2
)
2

∑ 𝑥𝑗
2𝑛

𝑗=1 ∑ 𝑦𝑗
2𝑛

𝑗=1

 

Jaccard/Tanimoto M24 -1/3 to 1 𝑇𝑋𝑌 =
∑ 𝑥𝑗𝑦𝑗
𝑛
𝑗=1

∑ 𝑥𝑗
2𝑛

𝑗=1 + ∑ 𝑦𝑗
2𝑛

𝑗=1 − ∑ 𝑥𝑗𝑦𝑗
𝑛
𝑗=1

 

Kulczynski M25 0 to ∞ 𝐾𝑢𝑙1𝑋𝑌 =
∑ 𝑥𝑗𝑦𝑗
𝑛
𝑗=1

∑ 𝑥𝑗
2𝑛

𝑗=1 + ∑ 𝑦𝑗
2𝑛

𝑗=1 − 2∑ 𝑥𝑗𝑦𝑗
𝑛
𝑗=1

 

Sokal/Sneath M26 0 to 1 

𝑆𝑆1𝑋𝑌

=
∑ 𝑥𝑗𝑦𝑗
𝑛
𝑗=1

2∑ 𝑥𝑗
2𝑛

𝑗=1 + 2∑ 𝑦𝑗
2𝑛

𝑗=1 − 3∑ 𝑥𝑗𝑦𝑗
𝑛
𝑗=1

 

Simpson M27 0 to 1 𝑆𝑖𝑚𝑋𝑌 =
∑ 𝑚𝑖𝑛(𝑥𝑗,𝑦𝑗)
𝑛
𝑗=1

𝑚𝑖𝑛(∑ 𝑥𝑗
𝑛
𝑗=1 , ∑ 𝑦𝑗

𝑛
𝑗=1 )

 

Ruzicka’s dissimilarity M28  

𝑑3(𝑋, 𝑌) = 1 − 2 [
∑ 𝑚𝑖𝑛{𝑥𝑖 , 𝑦𝑖}𝑖

∑ 𝑚𝑎𝑥{𝑥𝑖 , 𝑦𝑖}𝑖

] 

Where, X and Y represent the compared 

molecular vectors, xi and yi their 

corresponding vector components. 

Dice (also known as 

Czekanowski or Sørenson 

coefficient.) 
M29 -1 to 1 𝐷𝑋𝑌 =

2∑ 𝑥𝑗𝑦𝑗
𝑛
𝑗=1

∑ 𝑥𝑗
2𝑛

𝑗=1 + ∑ 𝑦𝑗
2𝑛

𝑗=1

 

Cosine coeficient/ 

identity corrected  
M30 -1 to 1 

𝐶𝑜𝑠𝑋𝑌 =
∑ 𝑥𝑗𝑦𝑗
𝑛
𝑗=1

√∑ 𝑥𝑗
2𝑛

𝑗=1 × ∑ 𝑦𝑗
2𝑛

𝑗=1

 

Additivity M31  𝑎𝑋𝑌 =
2𝑠𝑋𝑌

𝑠𝑋
2 + 𝑠𝑌

2 

Proportionality corrected M32  
𝐿𝑠𝑡 =

1

𝑁
∑(1 −

|𝑃𝑠𝑘 − 𝑃𝑡𝑘|

𝑚𝑎𝑥(|𝑃𝑠𝑘|, |𝑃𝑡𝑘|)
)

𝑁

𝑘=1
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There are two possibilities regarding the application of multi-metrics or metrics 

on the protein structure, these could be amino acid-based, or protein mass center-based. 

In the first option, the multi-metric or the metric is calculated considering the distance 

functions against every aa, consequently, the elements zij of the D-SDST or the 

elements zijl of the T-SDST when i = j or i = j = l, respectively, are zero. For the second 

case, the metric or multi-metric is calculated considering the distance functions against 

the mass center of the protein, and all elements zij on the D-SDST or all elements zijl on 

the T-SDST are different from zero; this approach may offer a better discrimination 

among protein spatial structures given that it provides information about the centrality 

of aa residues (See Figure 6). 

 
Figure 6. Numerical calculation example considering the difference between the distance 

to the center configuration applied on a two-tuple spatial dis similarity tensor (D-SDST) 

employing the truncated peptide 5WRX. The two-tuple tensor was calculated considering 

an amide carbon protein representation (AB), Non-Stochastic tensor (NS), k=1 and two 

different options: a) distance to the center was considered and b) distance to the center 

was not considered.  
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Table 3. Multi-metrics (geometric-based) available for the calculation of the novel 3D 

algebraic MDs for proteins. In bold, the software ID number of the multi-metric is 

indicated.  

Measure Formula Symmetry 

Triangle Area 

(M33-M34) 

 

𝑇𝑋𝑌𝑍 = √𝑠(𝑠 − 𝑑𝑋𝑌)(𝑠 − 𝑑𝑌𝑍)(𝑠 − 𝑑𝑍𝑋) 

             𝑠 =
𝑑𝑋𝑌 + 𝑑𝑌𝑍 + 𝑑𝑍𝑋

2
 

S 

Triangle’s Incircle 

Area 

(M35-M36) 
𝑇𝑋𝑌𝑍 = 𝜋(

2√𝑠(𝑠 − 𝑑𝑋𝑌)(𝑠 − 𝑑𝑌𝑍)(𝑠 − 𝑑𝑍𝑋)

𝑑𝑋𝑌 + 𝑑𝑌𝑍 + 𝑑𝑍𝑋
)

2

 S 

Summation Sides 

(M37-M38) 
𝑇𝑋𝑌𝑍 = 𝑑𝑋𝑌 + 𝑑𝑌𝑍 A 

Bond angle 

(Angle between 

sides) 

(M39-M40) 

𝐴𝑋, 𝐴𝑌, 𝐴𝑍𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠𝑜𝑓𝑡ℎ𝑟𝑒𝑒𝑎𝑚𝑖𝑛𝑜𝑎𝑐𝑖𝑑𝑠𝑜𝑓𝑎𝑝𝑟𝑜𝑡𝑒𝑖𝑛 
                      𝑈 = 𝐴𝑋 − 𝐴𝑌, 𝑉 = 𝐴𝑍 − 𝐴𝑌 

                     𝑇𝑋𝑌𝑍 = 𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑈 ∗ 𝑉

|𝑈| ∗ |𝑉|
) 

A 

Table 4. Multi-metrics (cluster-similarity-based) available for the calculation of the novel 

3D algebraic MDs for proteins. In bold, the software ID number of the multi-metric is 

indicated.  

Measure Formula Symmetry 

MIN-RULE 

[1-Nearest 

neighbor 

(NN)] 

(M41-M42) 

𝑇1𝑋𝑌𝑍 = 𝑚𝑖𝑛(𝑑𝑋𝑍, 𝑑𝑌𝑍) 

𝑉2 = {
𝑌, 𝑑𝑋𝑌 < 𝑑𝑋𝑍
𝑍, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑉3(𝑉2) = {
𝑌, 𝑌 ≠ 𝑉2
𝑍, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑇2𝑋𝑌𝑍 = 𝑚𝑖𝑛(𝑑𝑋𝑉3 , 𝑑𝑉2𝑉3) 

A 

JOIN-RULE 

(2-NN) 

(M43-M44) 

𝑑𝑚𝑖𝑛(𝑑𝑋𝑌, 𝑑𝑌𝑍 , 𝑑𝑍𝑋)𝑚𝑖𝑛  𝑑𝑚𝑎𝑥(𝑑𝑋𝑌, 𝑑𝑌𝑍 , 𝑑𝑍𝑋)𝑚𝑎𝑥  

 
















maxmin

maxmin

maxmin

maxmin

,

,

,

,,,,

dddd

dddd

dddd

dddddjoin

ZXZX

YZYZ

XYXY

ZXYZXY  

𝑇𝑋𝑌𝑍 = 𝑗𝑜𝑖𝑛(𝑑𝑋𝑌 , 𝑑𝑌𝑍, 𝑑𝑍𝑋 , 𝑑𝑚𝑎𝑥𝑚𝑖𝑛) 

S 

MAX-RULE 

(Furthest 

neighbor) 

(M45-M46) 

𝑇𝑋𝑌𝑍 = 𝑚𝑎𝑥(𝑑𝑋𝑍, 𝑑𝑌𝑍) A 

AVE-RULE 

(Average-link)  

(M47-M48) 
𝑇𝑋𝑌𝑍 =

𝑑𝑋𝑍 + 𝑑𝑌𝑍
2

 A 

MED-RULE 

(M49-M50) 𝑇𝑋𝑌𝑍 =
𝑑𝑋𝑍 + 𝑑𝑌𝑍

2
−
𝑑𝑋𝑌
4

 A 

WARD-RULE 

(M51-M52) 
𝑇𝑋𝑌𝑍 = 𝑑𝑋𝐶

2 + 𝑑𝑌𝐶
2 + 𝑑𝑍𝐶

2 − 𝑑𝑋𝐶𝑋𝑌
2 − 𝑑𝑌𝐶𝑋𝑌

2
 A 

ADJ-RULE 

(M53-M54) 
𝑇𝑋𝑌𝑍 = 𝑚𝑎𝑥(𝑑𝑋𝑌 , 𝑑𝑌𝑍, 𝑑𝑍𝑋) − 𝑑𝑋𝑌 A 

MAH-RULE 

(M55-M56) 
𝑇𝑋𝑌𝑍 = 𝑑𝑀𝑋𝐶

2
+ 𝑑𝑀𝑌𝐶

2
+ 𝑑𝑀𝑍𝐶

2
− 𝑑𝑀𝑋𝐶𝑋𝑌

2
− 𝑑𝑀𝑌𝐶𝑋𝑌

2
  

𝐶𝑋𝑌𝑍(𝐶𝑋𝑌) are the mean centroids for the amino acids X,Y,Z (XY) in the protein, respectively, 𝑑𝑀is the 

Mahalanobis distance. 



12 

 

3.2. kth power operation for interaction account 

Inter amino acid interactions do not occur only among near located amino acids, 

but also with amino acids located far in sequence. As a strategy for accounting these 

interactions on the proposed tensor, a Haddamard matrix product can be performed.5 

This procedure completes the power operation in every element of the spatial-

(dis)similarity tensors. The exponent k is a real number whose values can be positive or 

negative; when parameter k is negative, the reciprocal operation is computed. The range 

of values to evaluate this product could be from -12 to 12, e.g. k=-1 is related to the 

gravitational potential, k= -2 is related to the Coulomb potential (See Figure 7 and 

Figure 8 for an illustration).  

 
Figure 7. Numerical calculation example considering 2 different types of tensor 

normalization procedures and several exponents (k order) for the Haddamard product on 

a two-tuple spatial dis similarity tensor (D-SDST) employing the truncated peptide 

5WRX. The two-tuple tensor was calculated considering an amide carbon protein 

representation (AB) and distance to the center was not considered. The normalization 

procedures considered for this example were: simple stochastic (SS) (see Equation 3) and 

mutual probability (MP) (see Equation 5). The exponents (k) considered were: -12, -2, 

+2 and +12.  
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Table 5. Multi-metrics (classic, data-fusion and statistics-based) available for the 

calculation of the novel 3D algebraic MDs for proteins. In bold, the software ID number 

of the multi-metric is indicated.  

Measure Formula Symmetry 

ADD-RULE 

(Average D/D 

degree) 

(M57-M58) 

𝑇𝑋𝑌𝑍 =
1

3
(
𝑑𝑋𝑌
𝑝𝑋𝑌

+
𝑑𝑌𝑍
𝑝𝑌𝑍

+
𝑑𝑍𝑋
𝑝𝑍𝑋

) 

 

S 

SUM-RULE  

(Wiener index) 

(M59-M60) 

𝑇𝑋𝑌𝑍 = 𝑑𝑋𝑌 + 𝑑𝑌𝑍 + 𝑑𝑍𝑋 

 
S 

PRO-RULE 

(M61-M62) 
𝑇𝑋𝑌𝑍 = 𝑑𝑋𝑌 ⋅ 𝑑𝑌𝑍 ⋅ 𝑑𝑍𝑋 S 

QUA-RULE 

(M63-M64) 𝑇𝑋𝑌𝑍 = (
𝑑𝑋𝑌

2 +⋅ 𝑑𝑌𝑍
2 + 𝑑𝑍𝑋

2

3
)

1
2

 S 

GEO-RULE 

(M65-M66) 𝑇𝑋𝑌𝑍 = (
𝑑𝑋𝑌

3 +⋅ 𝑑𝑌𝑍
3 + 𝑑𝑍𝑋

3

3
)

1
3

 S 

RAN-RULE 

(M67-M68) 

𝑇𝑋𝑌𝑍 = 𝑚𝑎𝑥(𝑑𝑋𝑌, 𝑑𝑌𝑍, 𝑑𝑍𝑋)
− 𝑚𝑖𝑛(𝑑𝑋𝑌 , 𝑑𝑌𝑍, 𝑑𝑍𝑋) 

S 

𝑝𝑋𝑌 is the topological distance between the amino acids (X and Y) 

Table 6. Multi-metrics (agreement coefficients-based) available for the calculation of the 

novel 3D algebraic MDs for proteins. In bold, the software ID number of the multi-metric 

is indicated.  

Measure Formula Symmetry 

IC-RULE 

Identity-

corrected 

(M69-M70) 

𝑇𝑋𝑌𝑍

=
2(𝑆𝑋𝑌 + 𝑆𝑋𝑍 + 𝑆𝑌𝑍)

2(𝑆𝑋
2 + 𝑆𝑌

2 + 𝑆𝑍
2) + (𝑋 − 𝑌)

2
+ (𝑋 − 𝑍)

2
+ (𝑌 − 𝑍)

2 A 

AC-RULE 

Additivity-

corrected 

(M71-M72) 

𝑇𝑋𝑌𝑍 =
𝑆𝑋𝑌 + 𝑆𝑋𝑍 + 𝑆𝑌𝑍

𝑆𝑋
2 + 𝑆𝑌

2 + 𝑆𝑍
2 S 

PC-RULE 

Proortionality-

corrected 

(M73-M74) 

𝑇𝑋𝑌𝑍 =∑

(∑ 𝑈𝑖𝑡𝑈𝑗𝑡
𝑛
𝑡 − 𝑛𝑈𝑖𝑈𝑡)

𝐴
⁄

𝑘
2
(𝑘 − 1) − 𝑛∑ [

𝑈𝑖𝑈𝑗
𝐴

]𝑘
𝑖<𝑗

𝑘

𝑖<𝑗

 

 

𝐴 = (∑𝑈𝑖𝑡
2∑𝑈𝑗𝑡

2

𝑛

𝑡

𝑛

𝑡

)

1
2

 

S 

LC-RULE 

Linearity-

corrected 

(M75-M76) 

𝑇𝑋𝑌𝑍 =
𝑟𝑋𝑌 + 𝑟𝑌𝑍 + 𝑟𝑍𝑋

3
 S 

n is the dimension (3), k is the number of combinations (i,j), when i<j [(1,2) (1,3) and (2,3)], 𝑈is 

the arithmetic mean of the the variable 𝑈. The values of the subscript “i “ (1,2,3) stands for the 

amino acids (X,Y,Z), respectively (e.g for the combination (1,2) U1 and U2 represent the amino 

acids X and Y) and 𝑟𝑋𝑌
 is the Pearson correlation between variables X and Y. 
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Figure 8. Numerical calculation example considering 2 different types of tensor 

normalization procedures and an order two exponent (k=2) for the Haddamard product 

on a three-tuple spatial dis similarity tensor (T-SDST) employing the truncated peptide 

5WRX. The three-tuple tensor was calculated considering an amide carbon protein 

representation (AB) and distance to the center was not considered. The normalization 

procedures considered for this example were: simple stochastic (SS) (See Equation 4) and 

mutual probability (MP) (See Equation 6).  

 

3.3. Normalization procedures 

One of the main advantages of using normalization procedures is providing an 

information standardization when applied on a mathematical object.27 These procedures 

have not been normally employed on geometrical matrices, however, this strategy has 

been used for several MDs definition.28–32  

To apply probabilistic transformations for the two-tuple and three-tuple 

tensor approaches as a generalization, 2 normalization schemes will be evaluated: 

a) simple stochastic (SS) and b) mutual probability (MP); regarding the double 

stochastic approach, since it was proven that the aforementioned approach 

contains collinear information with SS and the calculation time for this scheme is 

considerably larger than for the other two approaches, this probability scheme was 

ruled out33.  

The kth simple-stochastic for two and three-tuple-(dis)similarity tensors 

ℤ𝑠𝑠
𝐷 𝑘𝑎𝑛𝑑 ℤ𝑠𝑠

𝑇 𝑘 (SS-D-SDST and SS-T-SDST) and kth mutual probability for two 

and three-tuple-(dis)similarity tensors ℤ𝑚𝑝
𝐷 𝑘𝑎𝑛𝑑 ℤ𝑚𝑝

𝑇 𝑘 (MP-D-SDST and MP-T-

SDST), can be defined by applying the following equations: 
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𝑧𝑖𝑗
𝑘

𝑠𝑠
𝐷 =

𝑧𝑖𝑗
𝑘

𝑛𝑠
𝐷

𝑆𝑖
=

𝑧𝑖𝑗
𝑘

𝑛𝑠
𝐷

∑ 𝑧𝑖
𝑘

𝑛𝑠
𝐷𝑛

𝑗=1

 ( 3) 

𝑧𝑖𝑗𝑙
𝑘

𝑠𝑠
𝑇 =

𝑧𝑖𝑗𝑙
𝑘

𝑛𝑠
𝑇

𝑆𝑗𝑙
=

𝑧𝑖𝑗𝑙
𝑘

𝑛𝑠
𝑇

∑ ∑ 𝑧𝑖𝑗𝑙
𝑘

𝑛𝑠
𝑇𝑛

𝑘=1
𝑛
𝑗=1

 ( 4) 

𝑧𝑖𝑗
𝑘

𝑚𝑝
𝐷 =

𝑧𝑖𝑗
𝑘

𝑛𝑠
𝐷

𝑆𝑖𝑗
=

𝑧𝑖𝑗𝑙
𝑘

𝑛𝑠
𝐷

∑ ∑ 𝑧𝑖𝑗
𝑘

𝑛𝑠
𝐷𝑛

𝑗=1
𝑛
𝑖=1

 ( 5) 

𝑧𝑖𝑗𝑙
𝑘

𝑚𝑝
𝑇 =

𝑧𝑡𝑖𝑗𝑙
𝑘

𝑛𝑠
𝑇

𝑆𝑖𝑗𝑙
=

𝑧𝑖𝑗𝑙
𝑘

𝑛𝑠
𝑇

∑ ∑ ∑ 𝑧𝑖𝑗𝑙
𝑘

𝑛𝑠
𝑇𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1

 ( 6) 

where, 𝑧𝑖𝑗𝑙
𝑘

𝑛𝑠
𝐷 , 𝑧𝑖𝑗𝑙

𝑘
𝑛𝑠
𝑇  are the elements of the kth non-stochastic two and three-tuple-

spatial (dis)similarity tensors. Si is the summation of all elements on a row on the two-

tuple tensor, Sjl is the summation of all entries of the two-tuple tensor corresponding to 

each aa i in a three-tuple matrix for the simple stochastic case. Considering the mutual 

probability scheme, Sij is the summation of all elements on the two-tuple tensor, Sijl is 

the summation of all elements of the three-tuple tensor (see Figure 7 and Figure 8) 

3.4. Topological and Geometrical Cut-offs for fragment evaluation  

Non-covalent interactions have a central effect on the final structure of 

macromolecules, their specific binding modes and the self-organizing process of 

cellular structures and macromolecular as well other functions.1 The relationship 

between the distance and the magnitude of the non-covalent interactions of diverse 

nature (functional groups and steric conditions) demonstrates their contribution to the 

maintenance of the 3D protein structure. On other hand, the relationship between the 

topology and the folding of biopolymers has been elucidated in diverse studies, where 

significant correlation between simple structural parameters and the speed of protein 

folding has been found. 7,34–36 In this way, sometimes it may be useful to build tensors 

with information on the interaction between amino acid residues found at a certain 

distance (or distance range) in the sequence with the objective of studying possible 
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relations between a specific property and topological features of the native state of the 

protein. 

For the purpose of considering solely some types of non-covalent interactions in 

global or local indices, two different approaches are applied: 

1) Geometric cut-off (l), based on Euclidean distance at lag l, termed as “length cut-

off”. 

2) Graph-theoretical cut-off (p) based on topological distance at lag p, designated as 

“path cut-off”. 

The application of one or both cut-offs over ℤ𝒌𝒏𝒔
𝐷,𝑇

 generates the geometric tensor 

at the lags l and/or p and their entries are calculated as follows: 

 𝑧𝑛𝑠
(𝑝/𝑙)

𝑖𝑗
𝑘 = 𝑧𝑛𝑠

(𝑝/𝑙)
𝑖𝑗
𝑘 × 𝛿𝑖𝑗           (𝛿𝑖𝑗 = 1if pmin ≤ pij ≤ pmax and/or lmin ≤ lij ≤ lmax) 

𝑧𝑛𝑠
(𝑝/𝑙)

𝑖𝑗
𝑘 = 0     otherwise 

(7) 

where, lmin and lmax are the lower and upper bounds for the metric dependent 

distance between amino acids, respectively, and lij is the metric dependent distance 

between the amino acids i and j; pmin and pmax are the pre-defined topological distance 

thresholds, pij is the topological distance between the amino acids i and j. It is important 

to note that when the length and/or path thresholds are applied to the computation of the 

ℤ𝒏𝒔
(𝒑/𝒍) 𝒌 , a sparse tensor (a tensor with relatively few nonzero elements) is obtained, 

where each entry 𝒛𝒏𝒔
(𝒑/𝒍)

𝒊𝒋
𝒌  coincides with its original definition (the term 𝜹𝒊𝒋=1, [see Eq. 

(7)], only if the metric dependent (lij) and/or topological (pij) distances between amino 

acids i and j lie(s) within the pre-defined geometric (lmin-lmax) and/or topological (pmin-

pmax) intervals or it is zero otherwise. 

For instance, the use of the length criterion (together with exponent k) permits to 

take account only those non-covalent interactions among the functional groups of the 
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amino acids, which meaningfully contribute to the preservation of the 3D protein 

structure.  

On the other hand, the path criterion allows to the selection of the non-covalent 

interactions for amino acids within a given topological distance. It should be noted that 

the topological distance between two amino acids i and j is determined by the shortest 

path between vertices i and j (e.g. CAB
i , CAB

j) of the graph. 

Illustrations of the application of the length, path or both constrains to the 

computation of entries of the non-stochastic two or three tuple tensor considering k=1 at 

the lags l and/or p ( ℤ𝒏𝒔
(𝒑/𝒍) 𝟏 ) to characterize the 3D structure of a sample peptide could 

be found in Figure 9. 

Lastly, the kth simple- and mutual probability tensors at the lags l and/or p can be 

computed from the kth non-stochastic tensor at the lags l and/or p, in the same way as 

described in Subsection 3.3. 

The constraints approach (both length and path thresholds) allows to unify 

geometric and topological information in the same tensor and they also permit to 

consider the most relevant interactions and at the same time excluding irrelevant 

chemical information due to long-range interactions. It is not mandatory to use any 

constraints for calculations, however, incorporating this approach may be beneficial as 

the “cut-offs” permits the discrimination of the interaction types. 
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Figure 9. Numerical calculation example considering 2 different types of cut-offs on a 

two-tuple spatial dis similarity tensor (D-SDST) employing the truncated peptide 5WRX. 

The two-tuple tensor was calculated considering an amide carbon protein representation 

(AB), Non stochastic tensor (NS), k=1 and distance to the center was not considered. (A) 

D-SDST without cut-off. The cut-offs applied were: (B) Topological (lag p) constraint, 

cut-off interval [3-5], (C) Geometrical (lag l) constraint, cut-off interval [4-7 Å], (D) 

Topological and geometrical constraints, cut-off interval [3-5] and [4-7 Å], respectively.  

 

4. N-linear algebraic forms as a strategy for MDs calculation 

The definition for any kth two or three-linear biomacro-molecular descriptors for 

a protein must consider a canonical basis set and the application of N-linear forms (two-

linear or three-linear) in a ℝn space; equations (6) and (9) indicate the mathematical 

expressions for these definitions:  
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𝐿 = 𝑏𝑙𝑘(�̅�, �̅�) =𝐷
𝑘 ∑∑𝑧𝑖𝑗

𝑘𝑥𝑖𝑦𝑗
𝑛

𝑗=1

𝑛

𝑖=1

 
(8) 

𝐿 = 𝑡𝑟𝑘(�̅�, 𝑦,̅ �̅�) =𝑇
𝑘 ∑∑∑𝑧𝑖𝑗𝑙

𝑘 𝑥𝑖𝑦𝑗𝑝𝑙
𝑛

𝑙=1

𝑛

𝑗=1

𝑛

𝑖=1

 (9) 

These two-linear and three-linear forms could be defined by using matrix notation as 

follows: 

𝐿𝐷
𝑘 = [𝑋]ℤ𝑘[𝑌]𝑇 = X(1×n) ℤ(n×n)

𝑘𝐷 Y(n×1) (10) 

𝐿𝑇
𝑘 = [𝑋]ℤ𝑘[𝑌]𝑇[𝑃]𝑇 = X(1×n×1) ℤ(n×n×n)

𝑘𝑇 Y(n×1×1)P(1×1×n) (11) 

where, 𝐿𝐷
𝑘 𝑎𝑛𝑑 𝐿𝑇

𝑘 are the resulting two-linear and three-linear form MD, n is the 

number of amino acids (aa) present on the protein, [𝑋], [𝑌], [𝑃] are the macro-molecular 

vectors containing x1,…,xn, y1,…,yn and p1,…,pn  elements, which are the 

physicochemical properties of every aa present in the protein structure (Section 2). The 

kth two and three-tuple- spatial (dis)similarity tensors (D-SDST and T-SDST) 

( ℤ𝑘𝐷 𝑎𝑛𝑑 ℤ𝑘𝑇 ) are a two and three-order tensors whose elements 𝑧𝑖𝑗
𝑘 𝑎𝑛𝑑𝑧𝑖𝑗𝑙

𝑘  are 

calculated by using relationships (metrics and multi-metrics) between two and three aa, 

respectively (Section 3) (See Figure 10). 

Based on the physicochemical nature of the properties used for the 

macromolecular vectors conformation, the following algebraic forms could be defined:  

Two-linear: 1) Bilinear (B) (when all macromolecular vectors are configured 

differently, that is, using 2 different aa properties), 2) Quadratic (Q) (when both 

macromolecular vectors have the same configuration, that is, using the same aa 

property), 3) Linear (F) (when 1 macromolecular vector is the identity vector and the 

other one is an aa property). 

Three-linear: 1) Trilinear Canonical (Tr) (when all macromolecular vectors are 

configured differently, that is, using 3 different aa properties), 2) Trilinear linear (TrF) 
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(when 2 of the macro-molecular vectors are the identity vector and the other one is an 

aa property), 3) Trilinear bilinear (TrB) (when 2 macromolecular vectors have the same 

configuration (that is to say, by using the same aa property) and the other one is the 

identity vector), 4) Trilinear quadratic bilinear (TrQB) (when 2 macromolecular vectors 

have the same configuration and the other one has a different aa property from the 

previous), and 5) Trilinear cubic (TrC) (when all the macromolecular vectors have the 

same configuration, i.e., use the same aa property).  

 

Figure 10. Schematic indication of the transformation of the information contained on 

macro-molecular vectors using spatial information of the protein (Two and Three-Tuple-

Spatial Dis Similarity Tensors, D-SDST ( ℤ𝒌𝑫 ) and T-SDST ( ℤ𝒌𝑻 ), respectively) and 

algebraic forms. Here, n is the number of amino acids present on the protein, [𝑿], [𝒀], [𝑷] 
are macro-molecular vectors; zk

ij and zk
ijl are elements of the D-SDST and T-SDST, 

respectively, and blL and trL are the resulting two-linear and three-linear MDs. These 

algebraic forms are defined by the physicochemical nature of the macro-molecular 

vectors. 

 

5. Amino acid-based MDs definition using N-linear algebraic forms 

Considering that the structure of a protein comprises a defined number of 

amino acids (aas), then the kth two or three-linear biomacro-molecular descriptors 
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for every amino acid are computed by applying two-linear forms (bilinear, 

quadratic and linear) and three linear forms (trilinear canonical, trilinear quadratic, 

trilinear quadratic bilinear, trilinear bilinear, trilinear cubic) in ℝn, using a 

canonical (‘natural’) basis set, and can be expressed by the following equations, 

respectively: 

𝐿𝑎𝑎 = 𝑏𝑙𝑎𝑎,𝑘(�̅�, �̅�) =𝑏𝑙
𝑘 ∑∑𝑧𝑖𝑗

𝑎𝑎,𝑘𝑥𝑖𝑦𝑖 = [𝑋]𝑇
𝑛

𝑗=1

𝑛

𝑖=1

ℤ𝑎𝑎,𝑘[𝑌], ∀𝑎𝑎 = 1,2, … , 𝑛 (12) 

𝐿𝑎𝑎 = 𝑡𝑟𝑎𝑎,𝑘(�̅�, 𝑦,̅ �̅�) =𝑡𝑟
𝑘 ∑∑∑𝑧𝑖𝑗𝑙

𝑎𝑎,𝑘𝑥𝑖𝑦𝑗𝑝𝑙
𝑛

𝑙=1

𝑛

𝑗=1

𝑛

𝑖=1

= [𝑋]ℤ𝑎𝑎,𝑘[𝑌]𝑇[𝑃]𝑇∀𝑎𝑎 = 1,2, … , 𝑛 (13) 

where, n is the number of amino acids of the protein, [𝑋], [𝑌], [𝑃] are the macro-

molecular vectors containing x1,…,xn, y1,…,yn and p1,…,pn  elements, respectively, which 

are physicochemical properties of every aa present on the structure. 

The kth amino acid-level two-tuple-spatial (dis)similarity tensors (D-SDST) 

( ℤ𝑎𝑎,𝑘𝐷 ) with elements 𝑧𝑖𝑗
𝑎𝑎,𝑘𝐷  are computed by considering the following rules: 

  𝑧𝑖𝑗
𝑎𝑎,𝑘𝐷 = 𝑧𝑖𝑗

𝑘𝐷    if i  j = aa 

 𝑧𝑖𝑗
𝑎𝑎,𝑘𝐷 =

1

2
𝑧𝑖𝑗
𝑘𝐷               if i  j = aa   

 𝑧𝑖𝑗
𝑎𝑎,𝑘𝐷 = 0               otherwise 

 

(14) 

The kth amino acid-level three-tuple-spatial (dis)similarity tensors (T-SDST) 

( ℤ𝑎𝑎,𝑘𝑇 ) with elements 𝑧𝑖𝑗𝑙
𝑎𝑎,𝑘𝑇  are computed by considering the following rules: 

  𝑧𝑖𝑗𝑙
𝑎𝑎,𝑘𝑇 = 𝑧𝑖𝑗𝑙

𝑘𝑇    if i  j  l = aa 

 𝑧𝑖𝑗𝑙
𝑎𝑎,𝑘𝑇 =

2

3
𝑧𝑖𝑗𝑙
𝑘𝑇               if i,j  j,l  i,l = aa  

 𝑧𝑖𝑗𝑙
𝑎𝑎,𝑘𝑇 =

1

3
𝑧𝑖𝑗𝑙
𝑘𝑇               if i  j  l = aa   

 𝑧𝑖𝑗𝑙
𝑎𝑎,𝑘𝑇 = 0               otherwise 

 

 

(15) 
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Consequently, if a protein contains “B” aa in its structure, the D-SDST ( ℤ𝑘𝐷 ) 

and the T-SDST ( ℤ𝑘𝑇 ) can be expressed as the sum of “B” aa-level matrices 

( ℤ𝑎𝑎,𝑘𝐷 𝑎𝑛𝑑 ℤ𝑎𝑎,𝑘𝑇 ) (see Figure 11Figure 12). From this concept, after the application 

of algebraic maps on every D-SDST and T-SDST, we will obtain “B” aa-level indices, 

denoted as 𝐿𝑎𝑎𝐷
𝑘 𝑎𝑛𝑑 𝐿𝑎𝑎𝑇

𝑘  (see Eq. (10 and 11)), which will be stored on an array  

This array will be designated as LAI (Local Amino Acidic Invariant) as a 

correspondence of the LOVI vector for organic molecules (Local Vertex Invariant).37,38 

From the LAI vector, the total (whole-protein) three-linear indices can be calculated by 

using aggregation operators (which is a generalization concept for merging 

components).39 These aggregation operators will be discussed in Section 7. The general 

calculation scheme for these novel biomacro-molecular indices is shown in Scheme 1. 

 
Figure 11. Generation of Local Amino Acid Invariant Vector (LAI vector, �̅�), which 

contains every amino acid-based molecular descriptor. This operation considers the use 

of macro-molecular vectors along the two-tuple spatial dis similarity tensor (D-SDST) 

for every amino acid on the protein. �̅� and �̅� are the macromolecular vector generated 

considering Molecular Volume (MV) and Hopp and Woods Hydropathy index (HWS), 

respectively.  
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Figure 12. Generation of Local Amino Acid Invariant Vector (LAI vector, �̅�), which 

contains every amino acid-based molecular descriptor. This operation considers the use 

of macro-molecular vectors along the three-tuple spatial dis similarity tensor (T-SDST) 

for every amino acid on the protein.�̅�, �̅� and �̅� are the macromolecular vector generated 

considering Molecular Volume (MV), Hopp and Woods Hydropathy index (HWS) and 

Electronic Charge Index (ECI), respectively.  

 

6. Local (Group) based molecular descriptors 

Group-based indices can be computed if groups of certain amino acids classified 

in terms of their activity/properties on solution or their probability to generate a certain 

secondary structure (see Table 7) are considered. These indices can be generated by 

selecting amino acids from the chosen group on the LAI vector. As a consequence, a 

new vector will be generated (Local Group-based Amino Acidic Invariant (LAIG)). This 

operation allows to evaluate the influence of certain aa in a variety of applications on 

protein science. 
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Table 7. Amino acids groups considered for the computation of the novel 3D algebraic 

biomacro-molecular descriptors for proteins. 

 

 

 

 

 

 

 

 

7. Aggregation operators as a tool for MDs generalization 

The notion of using linear combination as a strategy for merging components has 

been widely used in the scientific field. However, in the articles of Barigye,39,40 it was 

demonstrated that other mathematical merging operators yielded better results than the 

results obtained from the linear combination on chemical properties data. These 

invariants are classified in four major groups (see Table 8, Table 9,Table 10 for the 

mathematical expressions of all operators): a) Norms (or Metrics) Invariants: 

Minkowski norms (N1, N2, N3). Note that the N1 in our case is equivalent to the 

summation of the components of vector �̅�. b) Mean Invariants (first statistical 

moment): Geometric mean (GM), arithmetic mean (AM), quadratic mean (P2), power 

mean of third degree (P3) and harmonic mean (A). c) Statistical Invariants (highest 

statistical moments): Variance (V), skewness (S), kurtosis (K), standard deviation 

(SD), variation coefficient (CV), range (R), percentile 25 (Q1), percentile 50 (Q2), 

percentile 75 (Q3), inter-quartile range (I50), maximum Li (MX) and minimum Li 

(MN). d) Classical Invariants: Autocorrelation (AC), Gravitational (GV), Total 

Information Content (TIC), Mean Information Content (MIC), Standardized 

Information Content (SIC), Total Sum (TS), Ivanciuc – Balaban (IB), 

Electrotopological State (ES) and Kier-Hall Connectivity (KH). 

Group Amino acids  

FAHa ALA, CYS, LEU, MET, GLU, GLN, HIS, LYS. 

FBSb VAL, ILE, PHE, TYR, TRP, THR. 

UFGc GLY, PRO. 

AFTd GLY, SER, ASP, ASN, PRO. 

ALGe GLY, ALA, PRO, VAL, LEU, ILE, MET. 

AROf PHE, TYR, TRP. 

RPCg LYS, HIS, ARG. 

RNCh ASP, GLU. 

RAPi PRO, ILE, ALA, VAL, LEU, PHE, TRP, MET.  

RPUj ASN, CYS, GLY, SER, THR, TYR, GLN. 
aAlpha helix favoring amino acids; b Beta-sheets favoring amino acids; c Unfolding 

amino acids;  dBeta-turn favoring amino acids;  eAliphatic;  fAromatic; gPolar positively 

charged;  hPolar negatively charged;  eApolar;  jPolar uncharged. 
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The use of these mathematical operators on the LAIs vector enables us to obtain a 

series of indices that globally or partially characterize a protein (See Figure 13).  

 
Figure 13. Use of aggregation operators (AOs) as a strategy to fuse amino acid-based 

molecular descriptors into a global molecular descriptor. There are several types of AOs 

proposed on this study, see Tables 8, 9 and 10. 

 

8. Suggested theoretical configurations for in-software calculations 

To reduce the number of MDs to evaluate after the calculation, several analyses 

(information redundancy and collinearity) were performed considering all theoretical 

consideration available. As a result, 15 suggested theoretical configurations for two-

tuple descriptors (here designed as projects) and 10 suggested configurations for three 

tuple descriptors, were obtained. The project configuration for the two and three tuple 

descriptors are shown in Table 11 and Table 12.  

From these projects, a total of 13.648 were generated with the two-tuple approach 

and 20.263 MDs were generated with the three tuple approach on an HPC with the 

following computational characteristics: 16 cores Intel (R) Xeon (R) E5-2630 v3 @ 2.4 

GHz and 64 GB of RAM using MuLiMs console version.  
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Table 8. Mathematical formulae for Norms and Mean Aggregation operators.  

No. Group Name ID Formula 

1 

Norms 

(Metrics) 

Minkowski norm (p = 1) 

Manhattan norm 
N1 

 

 

 

2 
Minkowski norm (p = 2) 

Euclidean norm 
N2 

 

 

3 Minkowski norm (p = 3) N3 

 

 

4 

Mean 

 (first 

statistical 

moment) 

Geometric Mean GM 

 

5 
Arithmetic Mean 

(Power mean of degree β = 1) 
AM 

 

6 
Quadratic Mean 

(Power mean of degree β = 2) 
P2 

7 Power mean of degree β = 3 P3 

8 
Harmonic Mean 

(Power mean of degree β = -1) 
A 

 

 

 

 

 

 

 

 

 

 

GM = √∏𝐿𝑎𝑎

𝑛

𝑎=1

𝑛

 

M𝛽 = (
𝐿𝑎𝑎
𝛽

+ 𝐿𝑎𝑎
𝛽
+. . . +𝐿𝑎𝑎

𝛽

𝑛
)

1
𝛽

 

N3 = √∑𝐿𝑎𝑎
3

𝑛

𝑎=1

3

 

N1 = ∑𝐿𝑎

𝑛

𝑎=1

 

N2 = √∑𝐿𝑎
2

𝑛

𝑎=1

 



27 

 

Table 9. Mathematical formulae for Statistical Aggregation operators 

No. Group Name ID Formula 

9 

Statistical 

(highest 

statistical 

moments) 

Skewness S 

 

 

 

10 Variance V 

 

11 Kurtosis 

 

K 

 

 

12 Standard Deviation DE 

 

13 Variation Coefficient CV 
 

14 Range R 
 

15 Percentile 25 Q1 

 

16 Percentile 50 Q2  

17 Percentile 75 Q3 
 

18 Inter-quartile Range I50 
 

19 Maximum value MX MX = trL max 

20 Minimum value MN MN = trL min 

 

 

 

 

 

𝑆 =
𝑛 ∗ (𝑋3)

(𝑛 − 1)(𝑛 − 2)(𝑆𝐷)3
 

𝑋3 = ∑(𝐿𝑎𝑎 − 𝐴𝑀)3
𝑛

𝑎=1

 

𝑉 =
∑ (𝐿𝑎𝑎 − 𝐴𝑀)2𝑛
𝑎=1

𝑛 − 1
 

𝐾 =
𝑛(𝑛 + 1)𝑋4 − 3(𝑋2)(𝑋2)(𝑛 − 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑆𝐷)4
 

𝑋𝑗 = ∑(𝐿𝑎𝑎 − 𝐴𝑀)𝑗
𝑛

𝑎=1

 

SD = √
(∑𝐿𝑎𝑎 − 𝐴𝑀)2

𝑛 − 1
 

CV = 𝑆𝐷
𝐴𝑀⁄  

R = 𝐿minmax 

Q1 = [
𝑁

4
+
1

2
] 

Q2 = [
𝑁

2
+
1

2
] 

Q3 = [
3𝑁

4
+
1

2
] 

I50 = 𝑄3 − 𝑄1 
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Table 10. Mathematical formulae for Classical Aggregation Operators.   

No. Group Name ID Formula 

21 

Classical 

Autocorrelation ACk  

22 Gravitational GVk 

 

23 Total sum at lag k TSk 

 

24 Kier-Hall connectivity KHm 

 

25 Mean Information Content MIC 

 

26 Total Information Content TIC 

 

27 
Standardized Information 

Content 
SIC 

 

 

 

 

 

𝐴𝐶𝑘 =∑∑𝐿𝑖 × 𝐿𝑗 • (

𝑛

𝑗≥1

𝑛

𝑖=1

𝛿(𝑑𝑖𝑗, 𝑘))𝑘 = 1,2, . .7 

𝐺𝑉𝑘 =
1

𝑛
∑∑

𝐿𝑖𝐿𝑗

𝑑𝑘 𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

• 𝛿(𝑑𝑖𝑗 , 𝑘))𝑘 = 1,2, . .7 

𝑇𝑆𝑘 =∑∑𝐿𝑖𝑗 • 𝛿(𝑑𝑖𝑗 , 𝑘))

𝑛

𝑗=1

𝑛

𝑖=1

 𝑘 = 1,2,… ,7 

𝐾𝑚 𝐻𝑡 =∑(∏𝐿𝑖, 𝑤

𝑛𝑘

𝑖=1

)

𝐾

𝑖=1 𝑘

𝜆

 

where, K is the number of sub-graphs, nk is the 

number of amino acids in a group, λ is equal to 

½, m and t are the sub-graph order and type, 

respectively 

𝑇𝐼𝐶 = 𝑁0 ⋅ log2𝑁0 −∑𝑁𝑔 ⋅ log2

𝐺

𝑔=1

𝑁𝑔 

𝑆𝐼𝐶 =
𝐼𝑇

𝑁0 ⋅ log2𝑁0
 

𝑀𝐼𝐶 = −∑
𝑁𝑔

𝑁𝑜

𝐴

𝑖=1

⋅ log2
𝑁𝑔

𝑁𝑜
 

where, Ng is the number of amino acids with 

the same LAI value. No is the number of 

amino acids in a molecule 
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Table 11. Theoretical configurations for two-tuple MDs calculation 

 
Algebraic 

Form 
Matrix Form Order Metrics Group Properties   Cut-off 

Proj B Q F NS SS MP k Duple Total Group Amino acid Electr. Hydr. Steric 
Aggregation 

Operators 
Center Topol. Geom. 

proj1  x   x  (-12) to (0) M8, M32 x RPU ALA, ARG ISA, ECI  PBS N1, GM, i50 x   

proj2  x    x (0) to (12) M11,M17 x UFG GLY, ASP Z1  MV, PAH N3, P2, K x   

proj3  x  x   (-3) to (3) M3,M24 x RPC PHE, TYR PIE HWS Z3, PAH 
N1, GM, P2, 

S, i50 
x >12 (4-11) 

proj4  x   x  (-3) to (3) M5, M26 x RPU ARG, ASP ECI KDS MV, PBS 
N3, AM, P3, 

S 
 (1-3) (8.1-11) 

proj5  x    x (-12) to (-2) M7, M11, M32 x UFG GLU, LYS, TYR Z1  Z3 N2, S, i50  (1-3)  

proj6   x x   (-2) to (2) M8, M5, M16 x RPC, FAH GLU, LYS, TYR ECI  MV, PAH N1, GM, K   (6-8) 

proj7   x  x x (0) to (6) M7, M11, M26 x RPU ALA, TYR ECI  MV, PAH N2, P2 x   

proj8   x x   (0) to (12) M3, M15, M24 x FAH, UFG PHE ISA  MV N3, AM, K x >12 (4-5.9) 

proj9 x     x (0) to (10) M16, M17, M24 x RPC, RPU ALA, ASP ISA HWS PBS N1, K x   

proj10 x    x  (-8) to (0) M5, M15, M32 x RPC, UFG ARG, ARG, LYS ECI HWS MV N1, K  >12 (4-11) 

proj11 x x x x   (-8) to (0) M8, M11, M15 x RPU ALA Z1 PBS  GM, i50 x   

proj12 x x x  x  (-6) to (0) M8, M17, M24 x UFG ARG, LYS  HWS PAH N1, P2 x (1-3) (8.1-11) 

proj13 x x x   x (-5) to (5) M7, M26 x RPC PHE, TYR Z1  PBS N3, S  >12 (4-5.9) 

proj14 x x x x x x (-1) to (3) M17, M32 x FAH GLU  KDS Z3 VC, Q1 x >12 (4-5.9) 

proj15 x x x x x x (-1) to (3) M3, M5 x RPU ALA PIE  MM P3, MX    
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Table 12. Theoretical configurations for three-tuple MDs calculation 

 Algebraic Forms 

Matrix 

Normalization Order Metrics Group Properties   

Proj Tr TrB TrF TrQB TrC NS SS MP k Duple Ternary Total Groups  AA Elect. Hydro. Steric 
Aggregation 

Operators 
Center 

proj1   x x x x x  
(-3) to 

(2) 
M5, M8 

M41, 

M45, 

M59,  

x   ISA  
PAH, 

Z3 
N1, K, MIC x 

proj2 x x x x x x x x 
(-12) to 

(-8) 

M3, 

M17 

M33, 

M37, 

M45, 

M57,M58 

x 

RPU, 

ARO, 

ALG, 

FAH, 

UFG 

 ECI HWS MV 
N3, P2, S, 

I50, SIC 
x 

proj3  x x     x 
(4) to 

(8) 
M5 

M41, 

M50  
x  

ASP, 

TYR 
PIE KDS PBS N1, MX,  GV x 

proj4    x x  x x 
(-2) to 

(6) 
M3 

M38, 

M47, 

M50  

x  
ARG, 

PHE 

ISA, 

ECI 
 MV GM, P2, I50 x 

proj5 x  x   x x  
(6) to 

(10) 

M11, 

M16 

M41,M46

, M57 
x 

RPC, 

RPU 

ALA, 

TYR 
Z1 KDS Z3 N3, K, MIC  

proj6    x x x  x 
(-6) to 

(2) 
M12 

M41,M48

, M59 
x ARO 

ARG, 

ASP 

ECI, 

PIE 
HWS  N1, S, I50  

proj7   x x x  x  
(-4) to 

(4) 
M15 

M45, 

M55, 

M58 

x FAH GLU ISA  
Z3, 

PAH 
N3, K, Q1  

proj8 x       x 
(-12) to 

(-1) 
M3 M33 x RPU  

ISA, 

ECI 
HWS 

Z3, 

PAH 
N1, TS x 

proj9   x  x  x  
(-2) to 

(2) 
M13 

M41, 

M46, 

M50 

x 
ALG, 

FAH 

ALA, 

ARG 

ECI, 

PIE 
HWS  N3, GM, P2 x 

proj10   x   x   x     
(-12) to 

(0) 
M5 

M48, 

M57 M59 
x 

RPU, 

UFG 

TYR, 

PHE 
    

Z3, 

PBS, 

MV 

N2, AM, MX  x 



31 

 

9. Bibliography  

(1)  Nelson, D. L.; Cox, M. M. Lehninger Principles of Bichemistry, Seventh Ed.; 

Macmillan Learning: New York, 2017. 

(2)  Lin, S.; Lapointe, J. Theoretical and Experimental Biology in One. Biomed. Sci. 

Eng. 2013, 6 (April), 435–442. 

(3)  Di Paola, L.; De Ruvo, M.; Paci, P.; Santoni, D.; Giuliani, A. Protein Contact 

Networks: An Emerging Paradigm in Chemistry. Chem. Rev. 2013, 113 (3), 

1598–1613. https://doi.org/10.1021/cr3002356. 

(4)  Wilson, R. Introduction to Graph Theory, Fourth Edi.; Prentice Hall: Edinburgh, 

1996. 

(5)  Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics; 

Todeschini, R., Consonni, V., Eds.; Methods and Principles in Medicinal 

Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 

2009; Vol. 2. https://doi.org/10.1002/9783527628766. 

(6)  Gonzalez-Diaz, H.; Vilar, S.; Santana, L.; Uriarte, E. Medicinal Chemistry and 

Bioinformatics - Current Trends in Drugs Discovery with Networks Topological 

Indices. Curr. Top. Med. Chem. 2007, 7 (10), 1015–1029. 

https://doi.org/10.2174/156802607780906771. 

(7)  Plaxco, K. W.; Simons, K. T.; Baker, D. Contact Order, Transition State 

Placement and the Refolding Rates of Single Domain Proteins. J. Mol. Biol. 

1998, 277 (4), 985–994. https://doi.org/10.1006/jmbi.1998.1645. 

(8)  Mishra, A.; Rana, P. S.; Mittal, A.; Jayaram, B. D2N: Distance to the Native. 

Biochim. Biophys. Acta - Proteins Proteomics 2014, 1844 (10), 1798–1807. 

https://doi.org/10.1016/j.bbapap.2014.07.010. 

(9)  Castillo-Garit, J. A.; Martinez-Santiago, O.; Marrero Ponce, Y.; Casañola-



32 

 

Martín, G. M.; Torrens, F. Atom-Based Non-Stochastic and Stochastic Bilinear 

Indices: Application to QSPR/QSAR Studies of Organic Compounds. Chem. 

Phys. Lett. 2008, 464 (1–3), 107–112. 

https://doi.org/10.1016/j.cplett.2008.08.094. 

(10)  Castillo-Garit, J. A.; Marrero Ponce, Y.; Torrens, F.; Rotondo, R. Atom-Based 

Stochastic and Non-Stochastic 3D-Chiral Bilinear Indices and Their Applications 

to Central Chirality Codification. J. Mol. Graph. Model. 2007, 26 (1), 32–47. 

https://doi.org/10.1016/j.jmgm.2006.09.007. 

(11)  Castillo-Garit, J. A.; Marrero Ponce, Y.; Torrens, F. Atom-Based 3D-Chiral 

Quadratic Indices. Part 2: Prediction of the Corticosteroid-Binding Globulin 

Binding Affinity of the 31 Benchmark Steroids Data Set. Bioorganic Med. Chem. 

2006, 14 (7), 2398–2408. https://doi.org/10.1016/j.bmc.2005.11.024. 

(12)  Marrero Ponce, Y.; Torrens, F.; García-Domenech, R.; Ortega-Broche, S. E.; 

Zaldivar, V. R. Novel 2D TOMOCOMD-CARDD Molecular Descriptors: Atom-

Based Stochastic and Non-Stochastic Bilinear Indices and Their QSPR 

Applications. J. Math. Chem. 2008, 44 (3), 650–673. 

https://doi.org/10.1007/s10910-008-9389-0. 

(13)  Marrero Ponce, Y.; Medina-Marrero, R.; Castillo-Garit, J. A.; Romero-Zaldivar, 

V.; Torrens, F.; Castro, E. A. Protein Linear Indices of the ‘Macromolecular 

Pseudograph α-Carbon Atom Adjacency Matrix’ in Bioinformatics. Part 1: 

Prediction of Protein Stability Effects of a Complete Set of Alanine Substitutions 

in Arc Repressor. Bioorg. Med. Chem. 2005, 13 (8), 3003–3015. 

https://doi.org/https://doi.org/10.1016/j.bmc.2005.01.062. 

(14)  Ortega-Broche, S. E.; Marrero Ponce, Y.; Díaz, Y. E.; Torrens, F.; Pérez-

Giménez, F. Tomocomd-Camps and Protein Bilinear Indices - Novel Bio-



33 

 

Macromolecular Descriptors for Protein Research: I. Predicting Protein Stability 

Effects of a Complete Set of Alanine Substitutions in the Arc Repressor. FEBS J. 

2010, 277 (15), 3118–3146. https://doi.org/10.1111/j.1742-4658.2010.07711.x. 

(15)  Collantes, E. R.; Dunn, W. J. Amino Acid Side Chain Descriptors for 

Quantitative Structure-Activity Relationship Studies of Peptide Analogues. J. 

Med. Chem. 1995, 38 (14), 2705–2713. https://doi.org/10.1021/jm00014a022. 

(16)  Kyte, J.; Doolittle, R. F. A Simple Method for Displaying the Hydropathic 

Character of a Protein. J. Mol. Biol. 1982, 157 (1), 105–132. 

https://doi.org/10.1016/0022-2836(82)90515-0. 

(17)  Hopp, T. P.; Woods, K. R. Prediction of Protein Antigenic Determinants from 

Amino Acid Sequences. Proc. Natl. Acad. Sci. USA 1981, 78 (6), 3824–3828. 

https://doi.org/10.1073/pnas.78.6.3824. 

(18)  Sillero, A.; Ribeiro, J. M. Isoelectric Points of Proteins: Theoretical 

Determination. Anal. Biochem. 1989, 179 (2), 319–325. 

https://doi.org/10.1016/0003-2697(89)90136-X. 

(19)  Hellberg, S.; Sjoestroem, M.; Skagerberg, B.; Wold, S. Peptide Quantitative 

Structure-Activity Relationships, a Multivariate Approach. J. Med. Chem. 1987, 

30 (7), 1126–1135. https://doi.org/10.1021/jm00390a003. 

(20)  Zamyatnin, A. A. Protein Volume in Solution. Prog. Biophys. Mol. Biol. 1972, 

24 (C), 107–123. https://doi.org/10.1016/0079-6107(72)90005-3. 

(21)  Topological Indices and Related Descriptors in QSAR and QSPR; Devillers, J., 

Balaban, A., Eds.; Gordon and Breach Science Publishers, 1999. 

(22)  Nikolić, S.; Trinajstić, N.; Mihalić, Z.; Carter, S. On the Geometric-Distance 

Matrix and the Corresponding Structural Invariants of Molecular Systems. Chem. 

Phys. Lett. 1991, 179 (1), 21–28. https://doi.org/https://doi.org/10.1016/0009-



34 

 

2614(91)90285-H. 

(23)  Deza, E.; Deza, M.-M. Chapter 3 - Generalizations of Metric Spaces; Deza, E., 

Deza, M.-M. B. T.-D. of D., Eds.; Elsevier: Amsterdam, 2006; pp 36–43. 

https://doi.org/https://doi.org/10.1016/B978-044452087-6/50003-2. 

(24)  Warrens, M. Similarity Coefficients for Binary Data: Properties of Coefficients, 

Coefficient Matrices, Multi-Way Metrics and Multivariate Coefficients; 2008. 

(25)  Deza, E.; Deza, M.-M. Chapter 1 - General Definitions. In Dictionary of 

Distances; Deza, E., Deza, M.-M. B. T.-D. of D., Eds.; Elsevier: Amsterdam, 

2006; pp 2–30. https://doi.org/https://doi.org/10.1016/B978-044452087-6/50001-

9. 

(26)  Deza, E.; Deza, M.-M. Chapter 4 - Metric Transforms; Deza, E., Deza, M.-M. B. 

T.-D. of D., Eds.; Elsevier: Amsterdam, 2006; pp 44–49. 

https://doi.org/https://doi.org/10.1016/B978-044452087-6/50004-4. 

(27)  Garcia-Jacas, C.; Marrero-Ponce, Y.; Barigye, S. J.; Valdes-Martin, J. R.; Rivera-

Borroto, O. M.; Olivero-Verbel, J. N-Linear Algebraic Maps for Chemical 

Structure Codification: A Suitable Generalization for Atom-Pair Approaches? 

Curr. Drug Metab. 2014, 15, 441–469. 

https://doi.org/10.2174/1389200215666140605124506. 

(28)  Marrero Ponce, Y.; González-Díaz, H.; Zaldivar, V. R.; Torrens, F.; Castro, E. A. 

3D-Chiral Quadratic Indices of the ‘Molecular Pseudograph’s Atom Adjacency 

Matrix’ and Their Application to Central Chirality Codification: Classification of 

ACE Inhibitors and Prediction of σ-Receptor Antagonist Activities. Bioorg. Med. 

Chem. 2004, 12 (20), 5331–5342. 

https://doi.org/https://doi.org/10.1016/j.bmc.2004.07.051. 

(29)  Ramos de Armas, R.; González Díaz, H.; Molina, R.; Uriarte, E. Markovian 



35 

 

Backbone Negentropies: Molecular Descriptors for Protein Research. I. 

Predicting Protein Stability in Arc Repressor Mutants. Proteins Struct. Funct. 

Bioinforma. 2004, 56 (4), 715–723. https://doi.org/10.1002/prot.20159. 

(30)  Gonzáles-Díaz, H.; Gia, O.; Uriarte, E.; Hernádez, I.; Ramos, R.; Chaviano, M.; 

Seijo, S.; Castillo, J. A.; Morales, L.; Santana, L.; et al. Markovian Chemicals “in 

Silico” Design (MARCH-INSIDE), a Promising Approach for Computer-Aided 

Molecular Design I: Discovery of Anticancer Compounds. J. Mol. Model. 2003, 

9 (6), 395–407. https://doi.org/10.1007/s00894-003-0148-7. 

(31)  Klein, D. J.; Palacios, J. L.; Randić, M.; Trinajstić, N. Random Walks and 

Chemical Graph Theory. J. Chem. Inf. Comput. Sci. 2004, 44 (5), 1521–1525. 

https://doi.org/10.1021/ci040100e. 

(32)  Carbó-Dorca, R. Stochastic Transformation of Quantum Similarity Matrices and 

Their Use in Quantum QSAR (QQSAR) Models. Int. J. Quantum Chem. 2000, 

79 (3), 163–177. https://doi.org/10.1002/1097-461X(2000)79:3<163::AID-

QUA2>3.0.CO;2-0. 

(33)  García-Jacas, C.; Marrero-Ponce, Y.; Acevedo-Martínez, L.; Barigye, S. J.; 

Valdés-Martiní, J. R.; Contreras-Torres, E. QuBiLS-MIDAS: A Parallel Free-

Software for Molecular Descriptors Computation Based on Multilinear Algebraic 

Maps. J. Comput. Chem. 2014, 35 (18), 1395–1409. 

https://doi.org/10.1002/jcc.23640. 

(34)  Gromiha, M.; Selvaraj, S. Comparison between Long-Range Interactions and 

Contact Order in Determining the Folding Rate of Two-State Proteins: 

Application of Long-Range Order to Folding Rate Prediction. J. Mol. Biol. 2001, 

310 (1), 27–32. https://doi.org/10.1007/s10853-005-0576-0. 

(35)  Gromiha, M.; Saraboji, K.; Ahmad, S.; Ponnuswamy, M. N.; Suwa, M. Role of 



36 

 

Non-Covalent Interactions for Determining the Folding Rate of Two-State 

Proteins. Biophys. Chem. 2004, 107 (3), 263–272. 

https://doi.org/https://doi.org/10.1016/j.bpc.2003.09.008. 

(36)  Gromiha, M. Importance of Native-State Topology for Determining the Folding 

Rate of Two-State Proteins. J. Chem. Inf. Comput. Sci. 2003, 43 (5), 1481–1485. 

https://doi.org/10.1021/ci0340308. 

(37)  Todeschini, R.; Consonni, V. New Local Vertex Invariants and Molecular 

Descriptors Based on Functions of the Vertex Degrees. MATCH - Commun. 

Math. Comput. Chem. 2010, 64, 359–372. 

https://doi.org/10.1016/j.renene.2014.11.073. 

(38)  Balaban, A. Local versus Global (i.e. Atomic versus Molecular) Numerical 

Modeling of Molecular Graphs. J. Chem. Inf. Comput. Sci. 1994, 34 (2), 398–

402. https://doi.org/10.1021/ci00018a028. 

(39)  Barigye, S. J.; Marrero Ponce, Y.; Martínez-López, Y.; Torrens, F.; Artiles-

Martínez, L. M.; Pino-Urias, R. W.; Martínez-Santiago, O. Relations Frequency 

Hypermatrices in Mutual, Conditional, and Joint Entropy-Based Information 

Indices. J. Comput. Chem. 2012, 34 (4), 259–274. 

https://doi.org/doi:10.1002/jcc.23123. 

(40)  Barigye, S.; Marrero-Ponce, Y.; Santiago, O.; Lopez, Y.; Perez-Gimenez, F.; 

Torrens, F. Shannon’s, Mutual, Conditional and Joint Entropy Information 

Indices: Generalization of Global Indices Defined from Local Vertex Invariants. 

Curr. Comput. Aided-Drug Des. 2013, 9 (2), 164–183. 

https://doi.org/10.2174/1573409911309020003. 

 

 


